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Coral reef habitat maps describe the spatial distribution and abundance of tropical
marine resources, making them essential for ecosystem-based approaches to planning
and management. Typically, these habitat maps have been created from optical and
acoustic remotely sensed imagery using manual, pixel- and object-based classification
methods. However, past studies have shown that none of these classification methods
alone are optimal for characterizing coral reef habitats for multiple management appli-
cations because the maps they produce (1) are not synoptic, (2) are time consuming to
develop, (3) have low thematic resolutions (i.e. number of classes), or (4) have low over-
all thematic accuracies. To address these deficiencies, a novel, semi-automated object-
and pixel-based technique was applied to multibeam echo sounder imagery to determine
its utility for characterizing coral reef ecosystems. This study is not a direct comparison
of these different methods but rather, a first attempt at applying a new classification tech-
nique to acoustic imagery. This technique used a combination of principal components
analysis, edge-based segmentation, and Quick, Unbiased, and Efficient Statistical Trees
(QUEST) to successfully partition the acoustic imagery into 35 distinct combinations
of (1) major and (2) detailed geomorphological structure, (3) major and (4) detailed
biological cover, and (5) live coral cover types. Thematic accuracies for these classes
(corrected for proportional bias) were as follows: (1) 95.7%, (2) 88.7%, (3) 95.0%,
(4) 74.0%, and (5) 88.3%, respectively. Approximately half of the habitat polygons
were manually edited (hence the name ‘semi-automated’) due to a combination of
mis-classifications by QUEST and noise in the acoustic data. While this method did
not generate a map that was entirely reproducible, it does show promise for increasing
the amount of automation with which thematically accurate benthic habitat maps can be
generated from acoustic imagery.

1. Introduction

Benthic habitat maps provide critical information about the extent and composition of
marine resources, and are vital for communicating information about the distribution and
abundance of species (Townsend 2000) to resource managers, scientists, and the pub-
lic. For this study, benthic habitat mapping is defined as the delineation and attribution
of the biological cover and geomorphological structure of distinct coral reef ecosystem
features on the seafloor. Habitat maps describe the location of benthic habitat features,
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their physical composition, and the types of organisms that colonize them. They sup-
port an increasing number of landscape ecology and habitat connectivity studies (Kendall,
Christensen, and Hillis-Starr 2003; Garza-Pérez, Lehmann, and Arias-González 2004;
Grober-Dunsmore et al. 2007; Pittman et al. 2007; Kendall et al. 2011), and are an impor-
tant tool for ecosystem-based management (Andréfouët 2008; Crowder and Norse 2008;
Hoffman and Gaines 2008; Wabnitz et al. 2008; Hamel and Andréfouët 2010), includ-
ing the process of coastal and marine spatial planning, as well as the design (Leslie
et al. 2003) and evaluation (Friedlander, Brown, and Monaco 2007) of marine protected
areas (MPAs).

Passive optical imagery is most frequently used to map coral reef habitats in excep-
tionally clear, shallow, tropical waters (Kendall et al. 2001; Battista, Costa, and Anderson
2007a; Battista, Costa, and Anderson 2007b), where low levels of turbidity allow sunlight
to penetrate the full-water column. Acoustic sensors are often deployed to map and charac-
terize areas where depth information is needed and/or where water is turbid or too deep for
passive optical sensors. The multibeam echo sounders (MBESs), in particular, are increas-
ingly being used because they provide spatially accurate and continuous bathymetry (i.e.
depth) and backscatter (i.e. intensity) imagery. MBESs collect this information by trans-
mitting multiple beams of sound several times a second, and then recording the time, angle,
and amplitude of each return (Burdic 1991). The depth and intensity images generated
by MBESs have been used to characterize the benthic biology and geology of tropical
areas (Lundblad et al. 2006; Costa, Bauer, and Mueller 2011; Costa, Tormey, and Battista
2012).

The following general methods have been used to create benthic habitat maps from
optical and acoustic imagery: (1) manual delineation and attribution; (2) pixel-based classi-
fication; and (3) object-based classification. The manual delineation and attribution requires
a cartographer to visually digitize, interpret, and characterize habitats visible in remotely
sensed imagery. Pixel-based methods use algorithms to classify each individual pixel in a
remotely sensed image. Object-based methods use algorithms to partition remotely sensed
imagery into polygons (representing the boundaries of distinct habitat features) by deter-
mining their location relative to other features on the reef or by grouping neighbouring
pixels with similar spatial, spectral, and textual characteristics (e.g. size, shape, colour,
and intensity). All of these methods have their own advantages and disadvantages. On the
one hand, manual classification methods have been used to develop benthic habitat maps
at multiple spatial scales with high thematic resolutions (i.e. up to 30 distinct habitat
classes) and high (i.e. >85%) overall thematic accuracies (Kendall et al. 2001; Coyne et al.
2003; Battista, Costa, and Anderson 2007a; Battista, Costa, and Anderson 2007b; Prada,
Appeldoorn, and Rivera 2008). However, this method is time consuming and subjective
because the habitat map’s spatial and thematic accuracy depends on the knowledge and
skill of the cartographer. Pixel-based methods, on the other hand, are potentially efficient
and objective ways to classify imagery and develop habitat maps. However, these methods
have been shown to be sensitive to noise in the imagery, exclude spatial and textual infor-
mation from the classification process, and produce single-scale benthic habitat maps often
with low thematic resolutions (<7 distinct classes) and/or lower overall thematic accuracies
(<80%) (Anderson, Reed, and Winn 2001; Maeder et al. 2002; Mishra et al. 2006; Weiss,
Miller, and Rooney 2008). Object-based methods, finally, are also potentially efficient and
objective ways to develop habitat maps using spatial and textual information at multiple
spatial scales. Even though these methods have been shown to produce habitat maps with
high overall thematic accuracies (>93%) (Lucieer 2008), currently they are often unable to
produce habitat maps which also have high thematic resolutions (Lucieer 2008).
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Given that each classification method has its own strengths and weaknesses, previous
studies have attempted to combine these methods to mitigate their individual limitations
and produce a singular, robust classification method. The majority of studies have used
semi-automated object- and pixel-based classification approaches to develop terrestrial
maps from optical imagery (de Kok, Schneider, and Ammer 1999; Dorren, Bernhard, and
Seijmonsbergen 2003; Walter 2004; Drăguţ and Blaschke 2006; Yu et al. 2006). Fewer
studies have used semi-automated approaches to develop benthic marine habitat maps
from optical imagery (Green and Lopez 2007; Urbański, Mazur, and Janas 2009), and
even fewer studies have applied semi-automated approaches to develop benthic habitat
maps from the MBES imagery (Costa and Battista 2008). Of all the studies with accu-
racy assessments (AAs) mentioned earlier, none were successful in creating a map with
both high thematic resolutions (>25 classes) and overall accuracies (>85%). Rather, the
resulting maps had either high thematic resolutions (≥43 distinct classes) and low overall
thematic accuracies (≤56%) (Yu et al. 2006) or low thematic resolutions (two to seven dis-
tinct habitat classes) and high overall thematic accuracies (≥83%) (Dorren, Bernhard, and
Seijmonsbergen 2003; Green and Lopez 2007; Urbański, Mazur, and Janas 2009). While
these thematic resolutions and accuracies may be acceptable for certain applications, they
are not representative of those commonly used in many scientific and management appli-
cations (Mumby et al. 1997; Monaco, Christensen, and Rohmann 2001) and may reduce
the effectiveness of certain management actions (e.g. establishing no-take areas based on
essential fish habitat) or inhibit the achievement of specific conservation goals (e.g. protect-
ing a certain percentage of coral reefs in a given area) (Leslie et al. 2003; Kendall and Miller
2008). Habitat maps with higher thematic resolutions and accuracies can also simultane-
ously address many different management needs because they contain added information
that may be relevant and scalable to a wider array of issues in the marine environment
(Crowder and Norse 2008). Furthermore, new management problems cannot always be
anticipated (e.g. with respect to climate change), which makes extracting the maximum
amount of information from the MBES imagery potentially important for being prepared
to meet future needs of the coastal and marine management community.

Keeping these issues in mind, we sought to develop a new semi-automated technique
that would overcome the shortcomings of the classification methods described earlier and
increase the thematic resolution and overall thematic accuracy of habitat maps produced
from acoustic imagery. This new, semi-automated technique uses a combination of princi-
pal component analysis (PCA) (Pearson 1901; Hotelling 1933), edge-based segmentation
(Jin 2009), QUEST algorithms (Loh and Shih 1997), and manual interpretation to create
a benthic habitat map. The goals of applying this new technique were to produce a habitat
map (1) efficiently and more objectively; (2) with a high thematic resolution (≥35 distinct
habitat classes (Table 1), including major and detailed geomorphological structure, biolog-
ical cover, and live coral cover); and (3) with high overall thematic accuracies (>85%).
The following three specific research questions were addressed in trying to meet these
goals.

(1) What surfaces and attributes are important for classifying benthic habitats from the
MBES imagery?

(2) What thematic map resolution and accuracy can this semi-automated method
achieve when applied to the MBES imagery?

(3) How much of the habitat map required manual editing and how does image quality
affect this semi-automated method’s performance?
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Table 1. Thirty-five distinct habitat classes were identified using this new technique.

Number Distinct habitat class

1 Aggregate Reef, Algae 50–<90%, Live Coral 0–<10%
2 Aggregate Reef, Algae 50–<90%, Live Coral 10–<50%
3 Aggregate Reef, Algae 90–100%, Live Coral 0–<10%
4 Aggregate Reef, Algae 90–100%, Live Coral 10–<50%
5 Aggregate Reef, Live Coral 50–<90%, Live Coral 50–<90%
6 Aggregated Patch Reefs, Algae 10–<50%, Live Coral 0–<10%
7 Aggregated Patch Reefs, Algae 50–<90%, Live Coral 0–<10%
8 Aggregated Patch Reefs, Algae 50–<90%, Live Coral

10–<50%
9 Aggregated Patch Reefs, Algae 90–100%, Live Coral 0–<10%
10 Aggregated Patch Reefs, Algae 90–100%, Live Coral

10–<50%
11 Individual Patch Reef, Algae 50–<90%, Live Coral 0–<10%
12 Individual Patch Reef, Algae 50–<90%, Live Coral 10–<50%
13 Individual Patch Reef, Algae 90–100%, Live Coral 0–<10%
14 Individual Patch Reef, Algae 90–100%, Live Coral 10–<50%
15 Pavement with Sand Channels, Algae 50–<90%, Live Coral

0–<10%
16 Pavement with Sand Channels, Algae 50–<90%, Live Coral

10–<50%
17 Pavement, Algae 10–<50%, Live Coral 0–<10%
18 Pavement, Algae 50–90%, Live Coral 0–<10%
19 Pavement, Algae 50–<90%, Live Coral 10–<50%
20 Pavement, Algae 90–100%, Live Coral 0–<10%
21 Pavement, Algae 90–100%, Live Coral 10–<50%
22 Rhodoliths with Scattered Coral and Rock, Algae 50–<90%,

Live Coral 0–<10%
23 Rhodoliths with Scattered Coral and Rock, Algae 90–100%,

Live Coral 0–<10%
24 Rhodoliths, Algae 10–<50%, Live Coral 0–<10%
25 Rhodoliths, Algae 50–<90%, Live Coral 0–<10%
26 Rhodoliths, Algae 90–100%, Live Coral 0–<10%
27 Rhodoliths, Seagrass 10–<50%, Live Coral 0–<10%
28 Rhodoliths, Seagrass 50–<90%, Live Coral 0–<10%
29 Sand with Scattered Coral and Rock, Algae 10–<50%, Live

Coral 0–<10%
30 Sand with Scattered Coral and Rock, Algae 50–<90%, Live

Coral 0–<10%
31 Sand with Scattered Coral and Rock, No Cover 90–100%, Live

Coral 0–<10%
32 Sand, Algae 10–<50%, Live Coral 0–<10%
33 Sand, Algae 50–<90%, Live Coral 0–<10%
34 Sand, No Cover 90–100%, Live Coral 0 –<10%
35 Sand, Seagrass 90–100%, Live Coral 0 –<10%

These three questions sought to answer the larger question: can this semi-automated method
successfully delineate and characterize benthic habitats from the MBES imagery? If so,
this novel approach may provide a useful alternative to other semi-automated classification
methods, and to the manual classification method for characterizing benthic habitats using
the MBES imagery.
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2. Methods

The first step in this process was to acquire and process the high-resolution MBES imagery
(Section 2.2). Benthic habitats were characterized using this MBES imagery using a
combination of object-based, pixel-based, and manual classification methods (Figure 1;
Costa et al. 2009). Several surfaces were derived from this imagery to describe the topo-
graphic complexity of the seafloor in different ways. Habitats with low and high levels of
topographic complexity were classified separately. The PCA was used to remove highly cor-
related information contained in the suite of topographic complexity surfaces (Section 2.3).
A first draft benthic habitat map was generated using edge-detection algorithms to delin-
eate seafloor features with distinct acoustic signatures in the PCA and backscatter surfaces
separately (Section 2.4). Polygons with distinct acoustic signatures were visited in the
field with underwater video cameras (Section 2.5.1). The resulting video information was
used to train the QUEST algorithm to classify each habitat feature automatically delin-
eated by the edge-detection algorithm into different geomorphological structure, biological
cover, and live coral classes based on their associated spatial, spectral, and textual met-
rics (Section 2.5.2). The two classifications were appended together and manually edited to
create a final seamless habitat map (Section 2.6).

2.1. Description of study site

The study site, Virgin Islands Coral Reef National Monument, is a MPA administered by
the National Park Service that is located off the southern coast of St. John in the US Virgin
Islands (Figure 2). This 51.4 km2 MPA was established in January 2001 by Presidential
proclamation because it – along with the Virgin Islands National Park – contains some of
the most biologically rich and economically important coral ecosystems in US Caribbean
waters (Zitello et al. 2009). In particular, these shallow (<30 m)-to-moderate (30–60 m)
depth waters support a diverse and complex system of coral reefs, shoreline mangrove
forests, and seagrass beds, utilized by several marine species (Zitello et al. 2009).

2.2. Data acquisition and processing: the MBES imagery

Approximately 90 km2 of MBES imagery was acquired in the southern Virgin Island Coral
Reef National Monument boundaries on two separate missions from 18 February 2004 to
5 March 2004 and 1 February 2005 to 12 February 2005. During both missions, seafloor
depths between 14 and 55 m were mapped at survey speeds between 4–7 knots using a
pole-mounted SeaBat 8101 extended range 240 kHz MBES (Teledyne Reson, Goleta, CA,
USA). An MBES was used instead of a single-beam echo sounder because MBESs pro-
vide highly resolved and spatially complete images of the seafloor. Additionally, an MBES
was used instead of a light detection and ranging (lidar) system because most lidar systems
cannot collect data deeper than approximately 30 m (Pittman, Costa, and Wedding 2013).
During both years, the Reson 8101 data were collected to meet International Hydrographic
Organization (IHO) Order 1 standards (IHO 2008). The data collected in 2005 met these
uncertainty standards. However, the MBES data collected in 2004 (Figure 2) did not meet
these standards because the pole-mount and MBES head vibrated during acquisition, intro-
ducing noise into the data. For more information about these surveys, see the following data
acquisition and processing reports for projects: NF-04-06-VI (Monaco and Rooney 2004)
and NF-05-USVI (Battista and Lazar 2005).

The MBES bathymetry and the backscatter data were acquired as Reson 8101 .xtf and
.gsf files. The MBES backscatter snippets (i.e. the full time series of backscatter returns
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International Journal of Remote Sensing 7

Figure 2. The US Virgin Islands (denoted by the inset box on the globe) includes St. Thomas,
St. John, and St. Croix. The MBES data were collected south of St. John: (a) bathymetric imagery
denoting the seafloor’s depth in metres; and (b) backscatter imagery denoting the amount of sound
returned from the seafloor. Backscatter intensity values do not have measurement units because they
are relative (not absolute) numbers. The red polygons denote where the bathymetry did not meet
IHO standards, and where the quality of the backscatter was degraded due to problems during the
acquisition of the MBES data.
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8 B.M. Costa and T.A. Battista

across a beam footprint) were geometrically and radiometrically corrected using Geocoder
3.0 software (Fonseca and Calder 2005; University of New Hampshire, Durham, NH,
USA). The backscatter snippets were geometrically corrected for navigation attitude, trans-
ducer attitude, and local seafloor slope using the MBES bathymetric surface, and were
radiometrically corrected for the changes in acquisition gains, power levels, pulse widths,
incidence angles, and ensonification areas. All snippets were retained during these cor-
rections, allowing the full resolution data to be used to create the final 16-bit, 2 × 2 m
backscatter surface for the entire study area south of St. John.

CARIS software was used to clean and validate the MBES depth data (CARIS 2012;
CARIS, Fredericton, Canada). Depths were corrected for sensor offsets, including roll,
pitch, yaw, latency, static and dynamic draft, the changing speed of sound in the water col-
umn, and the influence of tides. Verified tide levels and tidal zoning files were supplied by
NOAA’s Center for Operational Oceanographic Products and Services. Erroneous sound-
ings were removed manually. The 2004 and 2005 bathymetric surfaces were merged using
ArcGIS’s Raster Calculator to create a seamless 32-bit, 2 × 2 m bathymetry surface for the
entire study area south of St. John.

2.3. Data processing: creating complexity surfaces

Eight topographic complexity surfaces were derived from the merged 2 × 2 m bathymet-
ric surface. These surfaces specifically included (1) mean depth, (2) standard deviation
of depth, (3) curvature, (4) plan curvature, (5) profile curvature, (6) rugosity, (7) slope,
and (8) slope of slope (Figure 3; see Costa et al. 2009 for more details). Each of these
surfaces was calculated in ArcGIS 9.2 (ESRI 2012; ESRI, Redlands, CA, USA) using a
3 × 3 cell neighbourhood, where the central pixel in the neighbourhood was assigned the
calculated value. These eight surfaces were included in the classification process because
previous studies demonstrated their utility for characterizing the distribution of coral reef
ecosystems in the US Caribbean (Pittman, Costa, and Battista 2009).

Environment for Visualizing Images (ENVI) and ENVI Zoom 4.6 software, which
are used to visualize, process, and analyse many types of remotely sensed imagery, were
used to process these topographic complexity surfaces further (Exelis VIS 2012; Exelis
Visual Information Solutions, Boulder, CO, USA). In ENVI 4.6, the bathymetry and the
eight topographic complexity surfaces were subsequently rendered, stacked, and exported
to create one image with nine different bands (i.e. each band representing a specific

Figure 3. Eight surfaces were used to create the PCA surface. These surfaces and PCA surface are
pictured above. The red polygons denote where the bathymetry did not meet IHO standards, and
where the quality of the backscatter was degraded due to problems during the acquisition of the
MBES data.
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topographic complexity surface). This image was then masked and transformed into its
nine principal components (PCs) (based on the correlation). This transformation removed
information that was highly correlated and thus, redundant across the different bands. The
first three PCs were retained in the final image because they contained over 84% of the data
variability uniquely describing the complexity and structure of the seafloor. These PCs were
converted from 16-bit, floating point images to 8-bit, integer images, so that they could be
imported into ENVI Zoom 4.6 for segmentation.

2.4. Habitat map creation: seafloor feature delineation

The ENVI Zoom 4.6 Feature Extraction (Fx) Module (Exelis VIS 2008) was used to
segment the PCA and backscatter images separately using edge-detection algorithms devel-
oped by Jin (2009). These algorithms use a neighbourhood filter to identify the edges of
real-world features in an image and assign pixels on either side of that edge to a single
object (Glasbey and Horgan 1995). An object is defined as a group of pixels with similar
spatial, spectral (brightness and colour), and/or textural characteristics that make it visually
distinct from its surroundings (Exelis VIS 2008). Based on expert knowledge, features that
appeared to be coral reef and hard bottom habitats (i.e. Aggregate Reef, Individual Patch
Reefs, Aggregated Patch Reefs, Pavement, or Pavement with Sand Channels (see Costa
et al. (2009) for more details)) were automatically delineated from the three-band PCA
image. An attempt was made to automatically delineate these features from the original
topographic complexity surfaces as well, but the segmented results using the PCA image
were qualitatively much better. The hard bottom habitats were automatically delineated
from the PCA image, and not the backscatter image, because the topographic complex-
ity surfaces underlying the PCA made the vertical structure of coral reefs clearly visible.
Based on expert knowledge, features that appeared to be soft bottom habitats (i.e. Sand
or Sand with Scattered Coral and Rock, Rhodoliths or Rhodoliths with Scattered Coral
and Rock) were automatically delineated from the backscatter image. These habitats were
automatically delineated from the backscatter image because they lacked significant verti-
cal structure and because backscatter is indicative of sediment properties not detected in
the bathymetry surface, including grain size, and porosity (Hamilton et al. 1956; Shumway
1960; Hamilton 1972; Hamilton and Bachman 1982).

Three steps were involved in delineating discrete objects from an image (or images)
using the ENVI Fx module: (1) segmenting the image, (2) merging smaller segments into
larger objects, and (3) computing spatial, spectral, and textual attributes for each object.
The first two steps are interactive and heuristic, allowing the analyst to incrementally adjust
the input parameters to extract the features of greatest visual interest based on expert knowl-
edge. In step 1, the ‘scale level’ of the edge-detection algorithm can be changed to decrease
or increase the relative (not absolute) size of the objects to be extracted. Choosing a higher
scale level (e.g. >75) causes a smaller number of larger segments to be defined, while
choosing a lower scale level (e.g. <25) causes a greater number of smaller segments to
be defined (Exelis VIS 2008). For this study, small adjustments were made to the scale
parameter (in increments of five) and the effects of these changes were viewed in a pre-
view window. The scale values that produced the best results in the preview window were
selected heuristically. For coral reef and hard bottom habitats, a scale level of 75 was used
to extract features because this value minimized the negative effect of noise in the PCA
image on the segmentation process. A scale level of 25 was used to extract features that
appeared to be soft bottom habitats because it minimized the negative effect of noise in the
backscatter imagery on the edge-detection process.
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10 B.M. Costa and T.A. Battista

In step 2, the ‘merge level’ of the algorithm can be modified to merge smaller segments
into larger objects. Choosing a higher merge level (>75) causes segments with faded edges
to be merged, while choosing a lower merge level (<25) preserves more of these features
with faded edges (Exelis VIS 2008). For this study, small adjustments were made to the
merge parameter (in increments of one) and the effects of these changes were viewed in
a preview window. The scale values that produced the best results in the preview window
were selected heuristically by sight. A merge level of 99.2 was used to merge features
that appeared to be coral reef and hard bottom habitats in the PCA image, and a merge
level of 99.1 was used to merge features that appeared to be soft bottom habitats in the
backscatter surface. High merge levels were used in both segmentations to reduce the intra-
class spectral and textual variance. The reduction of intra-class spectral and textual variance
has been shown to increase the overall thematic accuracy of classified maps by up to 37%
(Benfield et al. 2007; Wang, Sousa, and Gong 2004; Leech 2006; Yan et al. 2006).

In step 3, ENVI Fx computes 14 spatial metrics, four textual metrics, one band ratio
metric, three hue/saturation/intensity metrics and four spectral metrics per input band for
each distinct object. These different metrics (called Fx object attributes) are described in
more detail in Exelis VIS (2008). After these Fx object attributes were calculated, all of
the automatically delineated objects and attributes were exported from ENVI Fx as a single
Environmental Systems Research Institute (ESRI) shapefile. Since coral reef features and
soft bottom features were segmented individually, they were exported as separate shapefiles.
The coral reef habitat shapefile had 34 attributes and 1287 polygons, whereas the soft bot-
tom shapefile had 22 attributes and 11,421 polygons. In ArcGIS, each of the polygons and
Fx object attributes were then converted to rasters using ArcGIS’s ‘Raster to Polygon’ func-
tion. The resulting 34 coral reef rasters and 22 soft bottom rasters were stacked separately
from each other, and exported to create two different images with several different bands
(each band representing a specific Fx object attribute) (Figure 4). These two images were
then classified using ground validation (GV) video and a supervised pixel-based approach
to develop a final benthic habitat map.

2.5. Habitat map creation: seafloor feature classification

2.5.1. Data acquisition and processing: ground validation video

Extensive field work is needed to create benthic habitat maps with high thematic accuracies.
Predetermined locations were visited to explore and verify habitats on the seafloor. These
‘GV’ locations were targeted to satisfy the following objectives: (1) explore features in the
imagery with unknown acoustic signatures; and (2) confirm that the habitat type correlated
with a particular acoustic signature remained consistent throughout the entire study area.
Two different optical imaging systems were used to collect GV data in 2005 and 2009.
Section 4 discusses the potential impact (on the habitat map) of the four-to-five-year time
lag between the acquisition of the MBES imagery and some of the GV videos.

During the 2005 mission, GV data were collected from 1 February 2005 to 12 February
2005 along 13 transects between 1.5 and 3.5 km in length using a Spectrum Phantom
S2 (Deep Ocean Engineering, San Leandro, CA, USA) remotely operated vehicle (ROV)
(Figure 5) (Menza, Kendall, and Hile 2008). GV transects were arranged so as to intersect
as many distinct acoustic signatures as possible. Video data were collected during an entire
transect using a forward-looking camera, and still photographs were collected every 30 s
using a downward-looking camera. The speed and height of ROV above the substrate were
held constant at approximately 1 m s−1 and 2 m s−1, respectively, to standardize the field
of view and spatial resolution of interpretations. An Ultra Short Baseline system (ORE
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Figure 4. The PCA and backscatter surfaces were segmented separately. (a) Segments produced
from the PCA surface symbolized using the ‘HUE’ attribute. (b) Segments produced from the
backscatter surface symbolized using the ‘AVG BAND’ attribute. ENVI Zoom calculated 34 and
22 attributes for the segments produced from the PCA and backscatter, respectively.

Offshore, West Wareham, MA, USA) was used to determine the relative position of ROV
to the ship.

During the 2009 mission, GV data were collected from 31 May 2009 to 7 June 2009 at
117 sites using an underwater drop camera (Figure 5). GV sites were systematically placed
in parts of the study area that were not explored using the ROV. These GV sites were located
using a hand-held Garmin 76 CS Wide Area Augmentation System (WAAS) enabled GPS
unit (Garmin International, Inc., Olathe, KS, USA). Once onsite, the vessel’s position was
logged continuously using a Trimble GeoXT GPS receiver (Trimble Navigation Limited,
Sunnyvale, CA, USA), and a SeaViewer Sea-Drop 950 camera (SeaViewer Underwater
Video Systems, Tampa, FL, USA) was deployed to collect video of the seafloor. As the
vessel drifted, the operator adjusted the camera to capture a downward and profile view
approximately two metres above the seafloor. This consistent field of view was similar to
the spatial resolution of the MBES imagery, and allowed for standardized measurements
of percentage biological cover and broadscale understanding of the structure at each site.
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12 B.M. Costa and T.A. Battista

Figure 5. In 2005, the Spectrum Phantom S2 ROV (upper right) collected underwater video and
high-resolution photographs of the seafloor along 13 transects for ground validation (GV) purposes.
In 2009, the SeaViewer Sea-Drop 950 camera (lower right) collected underwater video of the seafloor
at 117 discrete locations for GV purposes. The map (left) depicts these 13 transects and 117 locations
overlaid on the bathymetric surface. The SeaViewer camera was also used for validation purposes.

Table 2. Different components of the habitat classification scheme, and how
they are related to each other.

Geomorphological structure Biological cover

Major structure Major cover
Coral reef and hard bottom Algae
Soft bottom Live Coral

Seagrass

Detailed structure No Cover
Aggregate Reef
Individual Patch Reef Percentage major cover
Aggregated Patch Reefs 10–<50%
Pavement 50–<90%
Pavement with Sand Channels 90–100%
Rhodoliths
Rhodoliths with Scattered Coral and Rock Percentage live coral cover
Sand 0–<10%
Sand with Scattered Coral and Rock 10–<50%

50–<90%

However, no attempt was made to standardize the amount of time the camera was on the
seafloor. The layback between the camera and GPS antennae was estimated to be less than
25 m. The potential for mis-classifying habitats (due to the positional uncertainty intro-
duced by layback) was minimized by targeting the centres of large homogeneous habitat
polygons. The raw Trimble GPS data were post-processed and differentially corrected using
the VITH Continually Operating Reference Station at St. Thomas, the US Virgin Islands.

The ROV and drop camera videos were visually classified into major and detailed
geomorphological structure, major and detailed biological cover, and percentage live coral
cover (Table 2). Habitat features were described by varying levels of detail (i.e. at the major
and minor levels), so that users could refine the information depicted by the habitat map
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to best suit their research and management needs. The biological cover class was assigned
based on the dominant biological cover visible in the underwater video for each polygon.
The live coral cover class included the presence of both hard and soft corals. More specifics
about this classification scheme are described in Costa et al. (2009). The final classified GV
points were then separated into multiple shapefiles (i.e. one file for each distinct habitat
class). Each shapefile was subsequently imported into ENVI 4.6, and converted to regions
of interest (ROIs). There were 2051 ROIs in total. The habitat classes that were more com-
mon and covered larger areas (e.g. Rhodoliths, Algae 90–100%, Live Coral <10%) had a
higher number of ROIs than those classes that were less common and covered small areas
on the seafloor (e.g. Individual Patch Reef, Algae 90–100%, Live Coral 10–50%).

2.5.2. Data processing: training QUEST algorithm

The ROIs created from the classified ROV and drop camera GV points were used to train
the classification algorithm and to develop a final habitat map from the stacked Fx object
attribute rasters. These tasks were performed using ENVI 4.6’s Rule Gen 1.02 add-on
(Jengo 2004). This add-on contains the QUEST algorithm (Loh and Shih 1997), which
is implemented via ENVI’s native Decision Tree Tool. QUEST is a type of Classification
and Regression Tree (Breiman et al. 1984) that (1) is nonparametric and nonlinear, (2) has
negligible variable selection bias, (3) is computationally simplistic, and (4) yields binary
splits for categorical, ordinal or a mix of predictor variables (Figure 6). However, unlike
Classification and Regression Trees, the QUEST algorithm separates objects in an image
into classes using univariate (axis-orthogonal) discriminant-based splits. This type of
analysis separates the classification process into two parts at each split (or node) in the
decision tree.

The QUEST algorithm was used to classify each habitat object automatically delineated
by ENVI Fx. Coral reef and soft bottom habitats were classified separately because they
were delineated by Fx separately. ROIs for coral reef and soft bottom habitats each trained
the QUEST algorithm to develop a classification tree. These two trees were built using
the same input parameters (Costa et al. 2009), but different combinations of the spatial,
spectral, textual, hue/saturation/intensity, and band ratio attributes. In total, the algorithm

Figure 6. This diagram illustrates how QUEST uses binary decisions to split an image into different
classes. For example at node 1, if a habitat object’s minimum band value is <7.5, it is attributed as
‘Individual Patch Reef.’ However, if a habitat object’s minimum band value is ≥7.5, then QUEST
advances to node 2 and so on down the line. While this example tree only has three nodes, the final
coral reef and soft bottom decision trees had 91 and 71 nodes, respectively.
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14 B.M. Costa and T.A. Battista

found 91 and 71 useful splits when grouping coral reef features, and soft bottom features,
respectively. The final coral reef and soft bottom classifications were exported from ENVI
4.6 as separate ESRI shapefiles.

2.6. Habitat map post-processing

These ESRI shapefiles were imported into ArcGIS for additional post-processing and visual
quality assurance and control. The first step in this process was to integrate the coral reef
and soft bottom shapefiles into one single shapefile. To do so, all 698 of the coral reef
polygons were spatially merged with the soft bottom shapefile using ArcGIS’s Merge func-
tion. Next, we removed habitat polygons smaller than the 1000 m2 minimum mapping
unit (MMU). This MMU was chosen to be consistent with the adjacent shallow-water
map for St. John (Zitello et al. 2009). Polygons smaller than the MMU were removed
by merging them into neighbouring polygons with which they shared their longest com-
mon border using ET Geowizards (Tchoukanski 2008). The last post-processing step was
to visually evaluate the appended map, and to edit polygons if necessary. These edits
included re-classifying, merging or deleting polygons where the cartographer disagreed
with the algorithm’s interpretation. They also included manually digitizing habitat features
(>1000 m2 at a scale of 1:2000) that were not properly delineated during the feature extrac-
tion process due to the presence of acoustic noise. The end result was a seamless habitat
map of the seafloor with 738 soft bottom polygons and 545 coral reef and hard bottom
polygons.

2.7. Habitat map evaluation: assessing the new semi-automated method’s
performance

A statistically robust assessment of the habitat map’s thematic accuracy was conducted.
This assessment provided a quantitative understanding of the map’s reliability (i.e. were
certain habitats mis-classified?), and of the relationship between thematic resolution and
accuracy (i.e. was the map too resolved to support high thematic accuracies?). It is impor-
tant to note that this assessment was conducted by an independent scientist who was not
involved with the development of the map.

Thematic accuracy was characterized for major and detailed geomorphological struc-
ture, major and detailed biological cover, and percentage live coral cover classifications.
The accuracy of each of the 35 distinct habitat classes was not assessed independently
because there was not enough money to do so. Target locations for the accuracy assess-
ment were determined using a stratified random sampling technique to ensure that all
bottom classifications were assessed. A minimum of 25 points were randomly placed
within each detailed geomorphological structure class (n = 225) using Hawth’s analy-
sis tools (Beyer 2004). Seventy-four additional points were added to classes with larger
areas. Underwater video was collected at each of these 299 sites between 31 May
2009 and 7 June 2009. The time lag between the acquisition of the MBES imagery
and the validation drop camera videos may have impacted the accuracy of the clas-
sification results. This potential impact is discussed in more detail in Section 4. The
same procedure that was used to collect and classify GV video was also used to col-
lect and classify validation video (Section 2.5.1). The final classified validation points
(ni) were then spatially joined to the benthic habitat layer to extract the map classi-
fication for each point (nj). The resulting attribute table was used to create five error
matrices.
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These error matrices were used to calculate the overall accuracy (Po), producer’s accu-
racy, and user’s accuracy for the structure, cover, and live coral cover classes (Story and
Congalton 1986). In addition to overall, producer’s, and user’s accuracies, these matri-
ces were used to calculate the Tau coefficient (Te) at the 95% confidence level (1–α) (Ma
and Redmond 1995). The Card (Card 1982) method was used to remove the bias intro-
duced into the error matrices by unequal sampling rates (Hay 1979; Card 1982). This
method utilizes map marginal proportions (π j) to account for the disproportionate sam-
pling of rare and common map categories. Map marginal proportions were calculated as
the area of each map category (i.e. major and detailed geomorphological structure, major,
and detailed biological cover) divided by the total area of the benthic habitat map. For
example, the marginal proportion for Rhodoliths (π j = 0.77) was calculated by dividing
the class area (69.9 km2) by the total map area (90.2 km2). The map marginal propor-
tions were also utilized in the computation of confidence intervals (CIs) for the overall,
producer’s, and user’s accuracies (Card 1982; Congalton and Green 1999). Marginal pro-
portions were not computed, however, for the percentage live coral cover matrix because the
estimates of percentage hard bottom within each polygon needed to estimate the area of live
coral were unavailable.

Another measure of this semi-automated method’s performance was the ability of the
combined object- and pixel-based algorithms to delineate and classify habitat features
without any manual editing. Manual editing is defined as deleting, merging, adding or
re-attributing habitat polygons that were classified by the computer. The total number of
habitat polygons that were manually edited was estimated based on three iterations of ran-
domly distributed points (n = 5897 total) created using the sampling design tool for ArcGIS
(Menza and Buja 2008). These random points were stratified by unique habitat type (i.e. dis-
tinct combinations of detailed structure, detailed cover, and live coral cover) and weighted
by area to prevent undersampling of rare habitat features. Each class was allocated a min-
imum of 25 points. Habitat classifications contained in the original map (i.e. the unedited
map produced by QUEST) and the final map (i.e. the map which had its thematic accuracy
assessed) were extracted at each of these points, and compared to determine whether the
underlying polygon had been changed.

Based on the IHO standards and expert knowledge, specific areas in the source imagery
were determined to be acoustically noisy and of poor quality. Further investigation showed
that this noise was due to the pole-mount and MBES head persistently vibrating during
data acquisition. This vibration occurred because the pole-mount flexed while surveying
at 4–7 knots. This noise is most easily seen in the backscatter imagery (Figure 2) and
the topographic complexity surfaces (Figure 3). The relationship between MBES image
quality and the incorrect classification of habitat polygons was explored using Fisher’s
exact tests, chi-squared tests (with Yates continuity correction), and receiver operating
characteristic area under curves (AUCs). Receiver operating characteristic AUCs were
computed for each distinct geomorphological structure, biological cover, and live coral
cover class. The Fisher’s exact and chi-squared tests were used to further explore the rela-
tionship of MBES image quality and classification accuracy for 12 classes with relatively
low thematic accuracies (<80%). More specifically, the Fisher’s exact tests were used for
nine habitat classes that had (1) less than 25 validation points, (2) chi-squared expected
values that were less than 1, and/or (3) more than 20% of the chi-squared expected val-
ues were less than 5. These classes included: Soft bottom, Aggregated Reef, Individual
Patch Reef, Rhodoliths with Scattered Coral and Rock, Sand, Soft Bottom <10% Live
Coral, No Cover, Algae 10–50%, and No Cover 90–100% habitats. The chi-squared test
was used for the remaining three classes (i.e. Algae 50–90%, Algae 90–100%, and Hard
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16 B.M. Costa and T.A. Battista

Bottom Live Coral 10–50%), which did not meet this criteria. The Yates continuity cor-
rection was applied because each class was represented by a 2 × 2 frequency table.
Chi-squared tests (with Yates continuity correction) were also used to explore the rela-
tionship between MBES image quality and the number of polygons that were manually
edited.

3. Results

3.1. What surfaces and attributes are the most important for classifying coral reefs
using the MBES imagery?

The results from both PCA and QUEST algorithm were considered when examining which
surfaces and attributes were important for classifying coral reef habitats. Depth, mean

Table 3. The amount (%) of variance contributed by a single complexity surface to each principal
component (PC).

Percentage variance
contributed

Surface Units Definition PC 1 PC 2 PC 3 Total

Curvature 1/100 m Rate of change in curvature
across the surface
highlighting ridges, crests,
and valleys (in 3 × 3 cell
neighbourhood)

0.11 10.92 0.01 11.04

Curvature
(plan)

1/100 m Curvature of the surface
perpendicular to the
direction of the maximum
slope (in 3 × 3 cell
neighbourhood)

0.11 9.19 0.00 9.30

Curvature
(profile)

1/100 z
units

Curvature of the surface
parallel to the direction of
the maximum slope (in
3 × 3 cell neighbourhood)

0.08 9.38 0.01 9.48

Depth Metres Water depth 0.56 0.04 10.50 11.09
Depth (mean) Metres Average water depth (in 3 × 3

cell neighbourhood)
0.56 0.03 10.50 11.09

Depth
(standard
deviation)

Metres Dispersion of water depth
values about the mean (in
3 × 3 cell neighbourhood)

9.47 0.08 0.10 9.65

Rugosity Ratio
value

Ratio of surface area to planar
area (in 3 × 3 cell
neighbourhood) (Jenness,
2002 and 2004)

6.06 0.04 0.33 6.43

Slope Degrees Maximum rate of change in
slope (in 3 × 3 cell
neighbourhood)

8.75 0.06 0.47 9.29

Slope of slope Degrees of
degrees

Maximum rate of maximum
slope change (in 3 × 3 cell
neighbourhood)

6.79 0.06 0.04 6.88

Total 32.49 29.80 21.96 84.30

Notes: Approximately 84% of the variability in the data was contained in the first three principal components
combined. See Costa et al. (2009) for more details about individual surfaces.
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depth, and curvature were the most important surfaces for classifying coral reef habitats
from MBES imagery because they explained the largest amount of variance in the com-
bination of the first three PCs (Table 3). Variance in the first PC was explained primarily
by standard deviation of depth, slope, rugosity, and slope of slope. Curvature, plan curva-
ture, and profile curvature explained the majority of variance in the second PC, whereas
depth and mean depth explained the majority of variance in the third PC. These patterns
suggest that each topographic complexity surface contributed in a small way to the final
classification, and should not be excluded from this process. The same is true for the
backscatter surface because it provides information about the physical properties of the
seafloor (Hamilton et al. 1956; Shumway 1960; Hamilton 1972; Hamilton and Bachman
1982), which are not contained in, or highlighted by, the topographic complexity surfaces.
The backscatter surface was excluded from the PCA analysis because the noise present
in the data would have been mistaken for unique information about the seafloor, which
would have disproportionately affected each PC (Joliffe 2002) and most likely decreased
the thematic accuracy of the final classification.

The Fx object attributes that were important to the classification process differed
between coral reef habitats and soft bottom habitats. In particular, QUEST found that
19 ENVI Fx object attributes were useful for splitting coral reef habitat features into 21 dis-
tinct classes. Fourteen ENVI Fx object attributes were useful for splitting soft bottom
habitat features into 14 distinct classes (Table 4). Six of these Fx object attributes (i.e.
AVG_BAND, MAINDIR, MAX_BAND, TX_ENTROPY, TX_MEAN, TX_VARIANCE)
were useful for splitting both types of habitat features.

3.2. What thematic map resolution and accuracy can this semi-automated method
achieve when applied to the MBES imagery?

This semi-automated technique partitioned the MBES image into 35 distinct combina-
tions of major and detailed geomorphological structure, major and detailed biological
cover, and live coral cover (Figure 7). Overall accuracies (corrected for proportional bias)
were high for major geomorphological structure (95.7%) (Table 5), major biological cover
(88.7%) (Table 6) and detailed geomorphological structure (95.0%) (Table 7), and live
coral cover (88.3%) (Table 8). They were lower (>74.0%) for detailed biological cover
(Table 9).

User’s accuracies were high (>85%) for all categories in the major and detailed
geomorphological structure classes, and low (56–70%) for 5 out of 12 of the major and
detailed biological cover and live coral cover classes. This trend suggests a systematic
inclusion of habitat polygons within the wrong biological cover type class. However, no
such trend was apparent for the geomorphological structure classes. It is important to note
that a biological class was most often confused with the class next to it on the percent-
age cover continuum, whereas geomorphological classes were confused about an equal
number of times with habitats that were acoustically very similar and very different to
them. Producer’s accuracies, on the other hand, ranged widely (i.e. 14–100%) across all
habitat classes. This indicates that, while there were problems with omitting polygons
within specific classes, there was no systematic mis-classification of geomorphological
or biological class types overall. Three habitat classes (i.e. Sand with Scattered Coral
and Rock, Seagrass and Live Coral) were excluded from this analysis, because they
were rare and did not have enough validation points to robustly assess their thematic
accuracy.
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Figure 7. This figure depicts the final benthic habitat maps derived using the semi-automated clas-
sification method for (a) major and detailed geomorphological structure types; (b) major and detailed
biological cover types; and (c) amount of hard and soft live coral cover.

Notes: *PR denotes ‘patch reef,’ †SC denotes ‘sand channel,’ and §SCR denotes ‘scattered coral and
rock’.

3.3. How much of the habitat map was manually edited and how did the quality of the
MBES imagery affect the semi-automated method’s performance?

The original map (i.e. the unedited map produced by QUEST) had a total of 1324 poly-
gons that were larger than the map’s MMU, whereas the final map (i.e. the map that
had its thematic accuracy assessed) had a total of 1283 polygons. Approximately 55%
of these polygons were manually edited (Table 10). Polygons that were edited manually
occurred significantly more frequently in the area with low-quality imagery (i.e. which did
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Table 5. Error matrix for major geomorphological structure.

Accuracy assessment (i)

Map data (j) Hard bottom Soft bottom nj User’s accuracy

Hard bottom 264 (154) 11 (6) 275 (160) 96.0%
Soft bottom 2 (1) 22 (1) 24 (2) 91.7%
ni 266 (155) 33 (7) n = 299
Producer’s accuracy 99.2% 66.7% Po = 95.7%

Te = 0.913 ± 0.046

Notes: The overall accuracy corrected for proportional bias is 95.7% ± 2.3; α = 0.05. The values in parentheses
denote the number of validation points located in areas with poor image quality.

Table 6. Error matrix for major biological cover. The overall accuracy corrected for proportional
bias is 95.0% ± 2.3; α = 0.05.

Accuracy assessment (i)

Map data (j) No Cover Live Coral Algae Seagrass nj User’s accuracy

No Cover 15 (1) 7 (0) 22 (1) 68.2%
Live Coral 1 (1) 1 (1) −
Algae 7 (5) 269 (155) 276 (160) 97.5%
Seagrass − − −
ni 22 (6) 1 (1) 276 (155) − n = 299
Producer’s accuracy 68.2% − 97.5% − Po = 95.3%

Te = 0.930 ± 0.036

Note: The values in parentheses denote the number of validation points located in areas with poor quality imagery.

not meet IHO standards) than in the area with high-quality imagery (i.e. which did meet
these standards) (chi-square (χ2) = 14.01; degrees of freedom (df) = 1; p ≤ 0.0002).

Not all habitat classes required equal amounts of editing. Detailed biological cover
classes were the most frequently edited, followed by percentage biological cover, detailed
geomorphological structure, major biological cover, major geomorphological structure,
and live coral cover. For major structure, major cover, percentage cover, and live coral
cover, significantly more polygons were edited in the areas that did not meet IHO standards
(χ2 = 6.489; df = 1; p ≤ 0.01; χ2 = 6.63; df = 1; p ≤ 0.01; χ2 = 9.15; df = 1; p ≤ 0.003;
and χ2 = 52.55; df = 1; p ≤ 0.0001, respectively). For detailed structure and detailed cover,
equal numbers of polygons were edited in both areas (χ2 = 0.02; df = 1; p ≤ 0.90 for the
areas that met IHO standards and χ2 = 1.16; df = 1; p ≤ 0.28 for areas that did not meet
IHO standards).

4. Discussion

This novel semi-automated technique shows promise for characterizing coral reef
ecosystems using MBES imagery, given the resulting habitat map’s high thematic resolu-
tion (35 distinct combinations of structure and cover) and high thematic accuracies (>88%
for major structure, major cover, detailed structure, and live coral cover classes). For our
purposes, thematic resolutions ≥35 and accuracies >85% are both considered to be ‘high’
as defined in the introduction. It is important to emphasize that some applications (e.g.
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designing biological sampling plans) may require fewer habitat classes and be able to tol-
erate higher levels of uncertainty, while others (e.g. assessing habitat damage from a ship
grounding) may need higher thematic resolutions and accuracies than those presented here.
These different requirements necessitate that resource managers and experts understand
the limitations of the habitat map that they are using, and determine a priori the maximum
amount of uncertainty allowed for their intended application.

While the overall thematic accuracies were high for most habitat types, this technique
did have problems reliably identifying specific classes based on their user’s and producer’s
accuracies (<75%). For geomorphological structure, these class types included (1) Soft
Bottom, (2) Aggregate Reef, (3) Individual Patch Reefs, (4) Rhodoliths with SCR, and
(5) Sand. For biological and live coral cover, these class types included: (1) No Cover,
(2) No Cover 90–<100%, (3) Algae 10–<50%, (4) Algae 50–<90% (5) Algae 90–100%,
(6) Soft Bottom, Live Coral <10%, and (7) Hard Bottom, Live Coral 10–<50%. One pos-
sible explanation for these omission and commission errors (Congalton 1991) is the poor
quality of the source imagery (i.e. the imagery that did not meet IHO standards) in some
parts of the project area. The image quality was degraded in these areas because the pole
on which the MBES transducer was mounted vibrated during data acquisition introducing
errors into the bathymetry and noise into the backscatter. These artefacts, and the resulting
low-quality imagery, affected the semi-automated classification method by making it diffi-
cult to distinguish among different habitat types. Polygons in the low-quality imagery areas
required significantly more manual editing to remove acoustic noise, and were automati-
cally delineated as distinct habitat features by the semi-automated method (Table 10). The
same is true for percentage cover and live coral cover.

The low-quality imagery also reduced the user’s and producer’s thematic accuracies for
certain classes automatically delineated and classified by the semi-automated method. This
explanation is supported by the fact that there were significantly more validation points
mis-classified in the low-quality imagery areas than in the high-quality imagery areas
for the following classes: (1) Soft Bottom (p ≤ 0.002), (2) Sand (p ≤ 0.001), (3) Algae
50–90% (χ2 = 10.04; df = 1; p ≤ 0.002; phi = 0.27), (4) Soft Bottom, Live Coral <10%
(p ≤ 0.002), and (5) Hard Bottom, Coral 10–50% (p ≤ 0.00005). Additionally, low-quality
imagery was found to be a reliable predictor of mis-classified validation points for the fol-
lowing classes: (1) Soft Bottom (AUC = 0.75 ± 0.15), (2) Sand (AUC = 0.78 ± 0.17),
(3) Algae 50–90% (AUC = 0.64 ± 0.08), (4) Soft Bottom, Live Coral <10% (AUC = 0.75
± 0.15), and (5) Hard Bottom, Coral 10–50% (AUC = 0.82 ± 0.11). Thus, the low user’s or
producer’s accuracies for these habitat classes were due to the poor quality of the imagery
and not to the semi-automated classification technique itself.

For other habitat classes, however, poor image quality did not contribute to their
lower (<75%) thematic accuracies. These classes specifically included (1) Aggregate Reef,
(2) Individual Patch Reefs, (3) Rhodoliths with Scattered Coral and Rock, (4) Algae
10–<50%, (5) Algae 90–100%, (6) No Cover, and (7) No Cover 90–<100%. This con-
clusion is supported by the fact that equal numbers of detailed structure and detailed cover
polygons were edited in both low- and high-quality imagery areas (Table 10). Additionally,
equal numbers of mis-classified validation points were located in the poor- and high-quality
image areas (p ≤ 0.91; p ≤ 1.0; p ≤ 0.15; p ≤ 0.95; (χ2 = 0.03; df = 1; p ≤ 0.87;
phi = 0.01); p ≤ 0.07; and p ≤ 0.07, respectively), and poor image quality was not much
better at predicting mis-classified validation points than random chance (AUC = 0.6 ±
0.27; AUC = 0.44 ± 0.11; AUC = 0.77 ± 0.35; AUC = 0.66 ± 0.34; AUC = 0.51 ± 0.07;
AUC = 0.65 ± 0.15; AUC = 0.65 ± 0.15, respectively). Thus, for these seven classes, other
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Table 8. Error matrix for concatenated major geomorphological structure and percentage live coral
cover. These numbers were not corrected for proportional bias because estimates of percentage hard
bottom were not made for each polygon.

Accuracy assessment (i)

Map data (j)
Soft bottom,
coral <10%

Hard
bottom,

coral <10%

Hard bottom,
coral 10% ≤

50%

Hard bottom,
coral 50% ≤

90% nj

User’s
accuracy

Soft bottom,
coral <10%

22 (1) 2 (1) 24 (2) 91.7%

Hard bottom,
coral <10%

11 (6) 219 (137) 5 (3) 235
(146)

93.2%

Hard bottom,
coral 10% ≤
50%

17 (12) 22 (1) 39 (13) 56.4%

Hard bottom,
coral 50% ≤
90%

1 (1) 1 (1) −

ni 33 (7) 238 (150) 27 (4) 1 (1) n = 299
Producer’s

accuracy
66.7% 92.0% 81.5% − Po = 88.3%

Te = 0.844 ± 0.049

Note: The values in parentheses denote the number of validation points located in areas with poor quality imagery.

systematic biases caused the more frequent omission and commission errors, resulting in
lower thematic accuracies.

One possible explanation for these lower thematic accuracies is that QUEST was unable
to reliably classify these detailed structure and detailed biological cover classes. This expla-
nation is supported by the fact that the detailed structure and detailed cover classes were
not impacted by the quality of the MBES imagery, and yet they had the highest number of
edited polygons out of any of the thematic habitat classes (Table 10). Future research that
compares QUEST with different classification algorithms (e.g. boosted regression trees or
random forest) would be useful to better understand this algorithm’s limitations. In addi-
tion to the algorithm itself, some of the QUEST’s mis-classifications may have occurred
because a small number of ROIs used to train QUEST were mis-classified initially. ROIs
may have been mis-classified because the amount of biological cover (particularly algae
and seagrass) may have changed due to anthropogenic or environmental stressors and/or
disturbances (Williams 1988) during the four-to-five-year time lag between the acquisition
of the MBES imagery and validation videos. Also during that time, a mass-bleaching event
(and subsequent disease) caused approximately 51.5% of the stony corals in the US Virgin
Islands to die (Wilkinson and Souter 2008). One or both of these events may also explain
the lower thematic accuracies of the four biological cover classes listed earlier.

However, it is unlikely that these events explain the lower thematic accuracies of the
three detailed structure classes because geomorphological structure generally changes at
much longer time scales than biological cover. ROIs for the remaining three detailed struc-
ture classes may have been mis-classified because they were located near the edges of
habitat features, and were thought to be located in one habitat type, when in fact they were
located in a different habitat type. This explanation is supported by fact that habitat classes
with lower thematic accuracies had more ROIs near habitat boundaries than classes with
higher thematic accuracies. For example, Aggregate Reef (producer’s accuracy = 66.7%)
had 47% of its ROIs located less than 25 m from a habitat boundary, whereas Rhodoliths
(producer’s accuracy = 94.4%) had only 23%. It is important to note that these two habitat
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Table 10. Estimated percentage of polygons at the 95% confidence interval (CI) that were re-
attributed because they were manually deleted, added, edited, and/or merged in both high- and
low-image-quality areas.

Class type

Estimated
percentage of

polygons that were
edited CI (±95%) χ 2 df p-Value ≤

More edited
polygons in area

with poor
quality imagery

Major structure 154/1283 = 12% 1% 6.49 1 0.0109 Yes
Detailed

structure
385/1283 = 30% 1% 0.02 1 0.8980 No significant

difference
Major cover 167/1283 = 13% 1% 6.63 1 0.0100 Yes
Percentage

cover
462/1283 = 36% 1% 9.15 1 0.0025 Yes

Detailed cover 539/1283 = 42% 1% 1.16 1 0.2815 No significant
difference

Live coral cover 51/1283 = 4% 0% 52.55 1 0.0001 Yes
Distinct habitat

class
706/1283 = 55% 0% 14.01 1 0.0002 Yes

Note: Chi-squared (χ2) test with Yates continuity correction (df = degrees of freedom) was used to determine
whether significantly more of these edited polygons were located in areas with poor quality imagery.

classes had similar average sizes (i.e. 0.17 ± 0.24 km2 and 0.16 ± 1.96 km2, respectively)
since ROIs are more likely to be located close to habitat boundaries in classes that cover less
area (e.g. Individual Patch Reefs). To reduce the possibility of this error in the future, ROIs
located near habitat transition zones should be removed from the training process to ensure
their correct classification. Alternatively, ultrashort baseline acoustic tracking could be used
to reduce the positional uncertainty associated with GV or validation point locations.

5. Conclusion

The new, semi-automated classification technique presented here created a thematically
resolved and accurate benthic habitat map from MBES imagery, of which almost half of the
polygons were delineated and classified by the computer alone. Even though this technique
shows promise, more research is clearly needed to improve the reliable classification of spe-
cific habitats, and further reduce the amount of manual editing that is needed. Additionally,
this method needs to be directly compared with other classification techniques to statisti-
cally determine whether it is capable of producing maps with similar thematic resolutions
and accuracies. With further improvements, this semi-automated approach may be able to
help to increase the efficiency with which benthic habitat maps are produced. Efficiently
and accurately creating benthic habitat maps is the key to transforming the process of map-
ping from a static, resource inventory tool to a dynamic, resource monitoring tool. By doing
so, resource managers would be able to more frequently assess the changes in the coral reef
systems that they manage. Improving our understanding of these ecosystems is the key to
identifying and mitigating the numerous threats faced by these resources in the present and
future.
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