
Chapter 5

Remote Sensing and Modeling of Coral Reef

Resilience

Anders Knudby, Simon J. Pittman, Joseph Maina, and Gwilym Rowlands

Abstract A new paradigm has emerged for management of coral reefs in an era of

changing climate – managing for resilience. A fundamental need for such manage-

ment to be effective is our ability to measure and map coral reef resilience. We

review the resilience concept and factors that may make a coral reef more or less

resilient to climate-driven impacts, and focus on recent advances in a trio of

technologies – remote sensing, spatial distribution modeling, and ecosystem sim-

ulation – that promise to improve our ability to quantify coral reef resilience across

reefs. Remote sensing allows direct mapping of several ecosystem variables that

influence reef resilience, including coral and algal cover, as well as a range of coral

reef stressors, as exemplified by three case studies. Spatial distribution modeling

allows exploitation of statistical relationships between mappable environmental

variables and factors that influence resilience but which cannot be mapped directly,

such as herbivore biomass. Ecosystem simulation modeling allows predictions to be
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made for the trajectories of reef ecosystems, given their initial state, interactions

between ecosystem components, and a realistic current and future disturbance

regime. Together, these technologies have the potential to allow production of

coral reef resilience maps. We conclude with a fourth case study that illustrates

integration of resilience maps into a multi-objective decision support framework.

Implementation of the managing for resilience paradigm is still in its infancy, but

the rapidly advancing technologies reviewed here can provide the resilience maps

needed for its successful operationalization.

5.1 Introduction

Global climate change is widely recognized as a major threat to tropical coral reefs,

primarily due to an increase in the frequency and magnitude of thermal stress events

leading to coral mortality from bleaching and disease outbreaks (Eakin et al. 2010).

Climate change is also predicted to increase the frequency of severe storms and the

acidity of ocean water that can cause physical damage to reef structure and reduce

coral growth rates (Hoegh-Guldberg et al. 2007; van Hooidonk et al. 2014;

Manzello et al. 2013). These broad-scale threats interact with more local stressors,

such as exposure to materials from land that reduce water quality and fishing that

removes functionally important species from the ecosystem (Hughes and Connell

1999; Wilson et al. 2006; Ban et al. 2014), to degrade reefs. The ecological

consequence for coral reefs from multiple stressors operating at multiple scales

will depend on the structural and functional attributes of the coral reef ecosystem, as

well as the type, magnitude and duration of stress (Carilli et al. 2009; McClanahan

et al. 2014). In many locations, interacting stressors have undermined the resilience

of coral-dominated communities, resulting in a phase-shift to a less desirable algal-

dominated community, with impaired provisioning of ecosystem goods and services

(Moberg and Rönnbäck 2003; Hughes et al. 2010; Pratchett et al. 2014).

Although the functional integrity of coral reefs is likely to be impacted more

where multiple severe stressors exist, the complex spatio-temporal heterogeneity of

environmental systems causes coral reefs and associated organisms to exhibit a

spatially complex stress response (Mumby and Steneck 2008; Elmqvist et al. 2003).

This presents a major challenge for management of coral reef ecosystems where the

identification of areas with different levels of resilience to stressors is required to

prioritize actions and design place-based conservation strategies (Game et al. 2008;

McClanahan et al. 2009; McLeod et al. 2008).

A new resilience paradigm has thus emerged for coral reef management, with

conservation objectives that aim to enhance or sustain the resilience of coral reefs to

the range of stressors they face (Nyström et al. 2008; McClanahan et al. 2012). A

major challenge for conservation ecology has thus become the provision of infor-

mation on resilience at spatial and temporal scales relevant to management. Typi-

cally, indicators of resilience are measured through in-water surveys, yet

management domains are geographically broad and therefore in-water surveys
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alone are of limited utility and prohibitively expensive for agencies to conduct.

Rapid and cost-effective techniques are therefore required to provide detailed and

ecologically relevant spatial information on coral reef resilience across broad and

structurally complex geographical areas. Advances in spatial technologies such as

remote sensing and spatial modeling show great potential to address this challenge

(Maina et al. 2008; Rowlands et al. 2012; Knudby et al. 2013a). For example,

ecological studies have demonstrated that the diversity and abundance of herbi-

vores (fishes and invertebrates) are important indicators of coral reef health through

their function in controlling algal biomass (Burkepile and Hay 2008; Cheal

et al. 2010). Models estimate that increased herbivory by parrotfish after protection

from fishing may increase reef resilience sixfold (Mumby et al. 2013b). While little

is known about the geography of herbivory and its implication for predicting

resilience, spatial modeling has shown that it is possible to map herbivore species

distributions, biomass, and the functional richness of herbivores across the seascape

(Pittman and Brown 2011; Knudby et al. 2013a; Pittman and Knudby 2014).

Research is now urgently required to determine the utility of mapping indicators

of resilience as a functionally meaningful spatial proxy for reef resilience. To

support science-based decision making in marine conservation, this chapter

presents a review of how remote sensing and spatial distribution modeling can

be used to map resilience indicators and how such maps can be integrated through

simulation modeling to provide spatially explicit estimates of coral reef resilience.

Finally we outline an approach for integrating such information through a

spatial decision support framework that uses local expert knowledge, remote

sensing data and in-water surveys to identify and prioritize coral reef ecosystems

for conservation action.

5.2 Coral Reef Ecosystem Resilience and Indicators

of Resilience

The concept of resilience and stability in ecology are not new. Holling (1973)

defined resilience as “a measure of the persistence of systems and their ability to
absorb change and disturbance and still maintain the same relationships between
populations or state variables”. Stability was defined as “the ability of a system to
return to an equilibrium state after a temporary disturbance” with a more rapid

return indicative of greater stability. Holling (1996) differentiated between ecolog-
ical resilience and engineering resilience, two aspects of a system’s stability that

have different consequences for evaluating, understanding, and managing com-

plexity and change. Engineering resilience assumes that the system in question has

a single stable state that it will return to in the absence of disturbance, and is

typically quantified as the magnitude of deviation from, and speed of return to, the

stable state following a disturbance. Ecological resilience, on the other hand,

assumes that multiple stable states exist, each bounded by a domain of attraction.

It is thus considered the amount of disturbance the system can be exposed to
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without moving beyond its current domain of attraction and transitioning to another

stable state (Holling 1996). Other authors have also considered ecosystem charac-

teristics such as durability and robustness (Dawson et al. 2010). Clarification and

debate on the use of terminology for both conceptualization and operationalization

of resilience is dealt with elsewhere in the literature (Gunderson 2000; Levin and

Lubchenco 2008; Mumby et al. 2014).

The spatial and temporal scales at which the system is considered influences our

understanding of stability and resilience (Holling 1992). Although the relevant spatial

and temporal scales are rarely specifically defined, it is broadly accepted that multiple

stable states exist for coral reef ecosystems (Knowlton 1992; Mumby et al. 2013a, but

see Dudgeon et al. 2010). Typically these include a desired coral-dominated state

that, given a combination of press and pulse disturbances, can be replaced by an

undesired macroalgae-dominated state. Ecological resilience has thus been broadly

adopted as the relevant resilience concept by the coral reef community, however, it is

difficult or impossible to measure in the absence of observed transitions between

stable states, and thus not practical as a basis for resilience assessment or manage-

ment. Engineering resilience, on the other hand, can be assessed by focusing on its

two components, often termed “resistance” (to disturbance) and “recovery” (from

disturbance). In order to manage for resilience, factors that influence resistance and

recovery must be identified and protected. A recent survey of expert opinion and

scientific evidence (McClanahan et al. 2012) identified 11 principal factors that

influence the resistance and/or recovery of coral reef ecosystems to climate-driven

disturbances – and are also feasible to assess from local field observations at

relatively fine spatial scales. These include aspects of the coral fauna (presence of

stress-resistant coral species, diversity of coral species, high levels of coral recruit-

ment, and absence of coral disease) and competition for space (low presence of

macroalgae), as well as moderators of competition (herbivore biomass), the physical

environment (high annual temperature variability, low nutrient and sediment levels),

and direct human impacts (physical impacts and fishing pressure). These 11 factors

can thus act as resilience indicators and may function as a list of mapping targets that

combined have the potential to characterize the resilience of a coral reef ecosystem

to climate-driven disturbance. For coral reefs, resilience has also been linked to

connectivity through consideration of the movement of organisms across the broader

seascape within which coral reefs are embedded (Mumby and Hastings 2008; Olds

et al. 2012; Melbourne-Thomas et al. 2011). This landscape ecology approach is still

in its infancy, but offers a pragmatic and ecologically rational way that remote

sensing and mapping can be used to identify coral reefs that vary in their connectivity

to neighboring habitat types (Pittman and Olds 2014).

5.3 What Remote Sensing Can Map on Coral Reefs

Remote sensing fromwater-, air- and space-borne platforms is now a core tool for the

mapping, monitoring and management of coral reef ecosystems (Mumby

et al. 2004a; Knudby et al. 2007). Sensor technology and the analytical tools for
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interpreting marine remote sensing data have advanced significantly in the past

decade, and now provide reliable, repeatable and cost-effective quantitative assess-

ments of habitat distributions and conditions over spatially extensive areas (Goodman

et al. 2013). Remote sensing can provide a synoptic view of coral reef ecosystems by

mapping a wide range of biological and physical variables from the water column to

the seafloor, as well as on adjacent terrestrial areas that are required to characterize

coral reef resilience, all at a wide range of spatial and temporal scales (Fig. 5.1).

The diversity of information that can now be provided by remote sensing using

passive sensors such as aerial photography, multispectral and hyperspectral sensors,

or active sensors such as acoustic and lidar instruments, thus allows complex

scientific and management-related questions to be addressed. Mapping the 11 resil-

ience indicators identified by McClanahan et al. (2012), however, remains a signif-

icant challenge. Here we describe the capabilities of acoustic and optical sensors for

mapping characteristics of the seafloor, the waters above, and the seascape context

that is relevant to understanding and mapping reef resilience (Table 5.1).
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Fig. 5.1 Spatial and temporal scales for mapping and monitoring coral reefs and their environ-

ment (Reproduced with permission from Jupiter et al. (2013))
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5.3.1 Mapping the Seafloor

Both the three-dimensional structure of the seafloor and the biological composition of

benthic coral reef habitats can be mapped accurately and at high spatial resolution

using active sensors, including ship-based acoustic systems (single-beam, side-scan,

Table 5.1 List of the 11 resilience indicators identified by McClanahan et al. (2012), and their

potential for begin mapped either directly using remote sensing or indirectly through spatial

distribution modeling

Resilience indicator Potential for direct mapping with remote sensing

Stress-tolerant coral

taxa

Coral taxa can generally not be mapped with remote sensing (Hochberg

et al. 2003). Local mapping of distinct and prominent taxa is occa-

sionally possible (Purkis et al. 2006)

Coral diversity Coral diversity can generally not be mapped with remote sensing,

although general measures of habitat diversity can be derived

(Mumby 2001; Harborne et al. 2006; LeDrew et al. 2004)

Historical temperature

variability

Historical SST variability can be directly derived from the long record

of global SST data products (McClanahan et al. 2007)

Nutrients (pollution) Derivation of near-surface concentrations of chlorophyll-a, CDOM and

CDM is possible for Case I waters using ocean colour data, but is

unlikely to be effective for coral reefs where RTM inversion algo-

rithms must be used to derive nutrient concentrations (Giardino

et al. 2007). The combination of airborne lidar and hyperspectral

data is also promising for direct observations of nutrient concentra-

tions on coral reefs (Aitken et al. 2010)

Sedimentation Derivation of suspended sediment concentration has been demonstrated

using airborne lidar and hyperspectral data (Epps et al. 2010) and

acoustics (Hoitink and Hoekstra 2005), while limited progress has

been made to derive this variable from passive optical data in coral

reef environments (Ouillon et al. 2008)

Herbivore biomass Several case studies show that the biomass of herbivorous fish can be

mapped from lidar or multispectral data (Purkis et al. 2008; Pittman

et al. 2009)

Physical human impacts While natural physical impacts on reefs can be derived from models and

historical observations, anthropogenic physical impacts on coral

reefs cannot generally be mapped with remote sensing

Coral disease Coral disease can generally not be mapped with remote sensing. How-

ever, remotely sensed SST can be used to predicted disease outbreak

risk (Heron et al. 2010)

Macroalgae Macroalgal cover can be mapped either with spectral unmixing tech-

niques (Goodman and Ustin 2007) or using benthic cover classifi-

cation techniques (Mumby et al. 1997; Roelfsema et al. 2013)

Coral recruitment Coral recruitment can generally not be mapped with remote sensing.

However, factors that influence coral recruitment and post-

settlement survival, and which can be mapped with remote sensing,

include suitable settlement substrate (Mumby et al. 2004b),

suspended sediment concentration (Hoitink and Hoekstra 2005) and

others

Fishing pressure While fishing pressure cannot be directly mapped using remote sensing,

proxy variables such as distance to settlements, port infrastructure or

markets may provide quantification of relative fishing pressure

between locations (Rowlands et al. 2012)
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multi-beam) and airborne lidar, as well as passive optical (multispectral,

hyperspectral) remote sensing. The basic principle employed in acoustic systems is

that a transmitter emits a sound pulse and measures the time until its reflection off the

seafloor is registered by a receiver. Using an estimation of the speed of sound in water

(Chen andMillero 1977), the two-way travel time of the pulse (from the emitter to the

seafloor, then back to the receiver) is then converted to a one-way vertical distance

that equals water depth (Riegl and Guarin 2013). Airborne lidar operates using a

similar principle. A short laser pulse is emitted, and the time until its reflection off

both the sea surface and the seafloor is measured. The two-way travel times are then

converted to one-way vertical distances, and the difference between the distances to

the sea surface and the seafloor equals water depth (Purkis and Brock 2013). Given

the positional accuracy obtainable with kinematic GPS and the timing accuracy of

laser pulse emission and return registration, airborne lidar can achieve typical

positional accuracies of seafloor points of 15 cm vertically and 1 m horizontally

(Purkis and Brock 2013). The energy contained in the laser pulse is lost through

refraction and backscattering at the sea surface, as well as absorption and scattering at

the seafloor and in the water column, thus limiting the depth to which a signal

reflected off the seafloor can reliably be detected to 60 m even in exceptionally

clear water, and much less in more turbid conditions. This stands in contrast to the

energy in the sound wave emitted by acoustic instruments, the attenuation of which is

largely determined by frequency while being relatively insensitive to turbidity, and

which can easily reach the seafloor at any depth relevant to studies of coral reefs

(Tolstoy and Clay 1966). Typical positional accuracies of seafloor observations from

multi-beam acoustic instruments are in the order of a few centimeters vertically and

~0.5 m horizontally (Ernstsen et al. 2006).

As an alternative to active sensors, the use of multi- or hyperspectral data to

derive maps of bathymetry also has a long history (Lyzenga 1978; Jupp 1988;

Bierwirth et al. 1993; Stumpf et al. 2003; Dekker et al. 2011). The most commonly

used empirical methods rely on field observations for local calibration of model

coefficients, and apply simplifying assumptions to constrain what is an inherently

underdetermined problem (Lee et al. 1998). More recently, methods that do not

require coincident field data for calibration have been developed for hyperspectral

remote sensing data. Pioneered by Lee et al. (1998, 1999), these methods use

radiative transfer models (RTM) to simulate the above-water spectral reflectance

that would be observed in atmospherically corrected satellite data, given a set of

inputs that include (or can be used to derive) water depth, water optical properties,

and seafloor spectral reflectance (Mobley et al. 2005). The use of these methods

with multispectral data is a promising but little explored approach to bathymetry

mapping (Hedley et al. 2012), with typical vertical accuracies of ~1–2 m in

optically shallow waters (Dekker et al. 2011). Although bathymetry per se is not

an important factor determining coral reef resilience, it may influence several of the

identified resilience indicators such as coral diversity and recruitment through its

influence on local current patterns. Thus, bathymetry and its derivatives can serve

as useful spatial proxies for a range of variables that cannot be reliably mapped

(Pittman and Knudby 2014). For example, measures of seafloor structural
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complexity, derived from seafloor terrain models, have repeatedly been shown to

function as a key predictor of several reef resilience indicators such as herbivore

biomass and coral abundance (Pittman et al. 2009; Knudby et al. 2010a, b; Pittman

and Brown 2011).

Although acoustic and lidar-based methods are also rapidly developing to

provide more detailed information on benthic cover (Park et al. 2010; Foster

et al. 2013; Pittman et al. 2013), derivation of information on coral reef biota

primarily relies on passive optical remote sensing, from which reef geomorpholog-

ical zonation (Smith et al. 1975; Andréfouët and Guzman 2005; Purkis et al. 2010)

and benthic cover types (Ahmad and Neil 1994; Green et al. 1996; Mumby

et al. 1997; Newman et al. 2007; Phinn et al. 2012) can be mapped. The number

of benthic cover types that can reliably be distinguished using passive optical

remote sensing methods depends on the platform and the sensor type, the depth

and optical properties of the water, as well as the inherent spectral separability of

the benthic cover types in question. Collectively research in this field suggests that

high sensor spatial resolution (Andréfouët et al. 2003; Mumby and Edwards 2002),

high sensor spectral resolution (Capolsini et al. 2003), and the presence of one or

more bands operating in the 400–500 nm (blue) spectrum (Hedley et al. 2012), in

addition to suitable environmental conditions (limited specular reflection off the sea

surface, clear and shallow water) are important for production of detailed and

accurate map products. Notable recent methodological developments have included

object-based (Roelfsema et al. 2013) and semi-automated (Suzuki et al. 2001)

delineation of geomorphology, a shift from per-pixel to object-based classification

of benthic habitat (Leon and Woodroffe 2011; Phinn et al. 2012; Roelfsema

et al. 2013), and multi-image approaches to improve map accuracy (Knudby

et al. 2014). For example, to overcome limitations of any one technique, Costa

and Battista (2013) developed a novel, semi-automated object- and pixel-based

technique to map coral reefs in the Caribbean from multibeam echo sounder

imagery. They produced maps with high accuracy (74–97 %) for geomorphological

types, detailed biological cover types and live coral cover.

Due to the widespread use of fractional live coral cover as an indicator of reef

health, methods have also been developed to map this biological variable

(Hochberg et al. 2003; Goodman and Ustin 2007; Joyce et al. 2013; Mumby

et al. 2004b). These methods typically rely on spectral derivative or unmixing

approaches applied to airborne hyperspectral data, and are most successful in

clear shallow water with few spectrally similar non-coral benthic cover types

(Dekker et al. 2011). Individual coral species cannot generally be distinguished

with remote sensing (Hochberg and Atkinson 2000; Hochberg et al. 2003), except

in rare circumstances (Purkis et al. 2006). As a result, coral diversity or the presence

of stress-resistant corals can also not be directly inferred from remote sensing data.

Although it has been demonstrated that corals affected by disease have distinct

spectral reflectance characteristics when measured in-situ (Anderson et al. 2013),

coral disease is also unlikely to be detectable with existing remote sensing instru-

ments, as is coral recruitment. As such, remote sensing is not capable of directly

mapping any of the four aspects of the coral fauna identified as important resilience
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indicators. Estimates of macroalgal cover, on the other hand, can be derived from

the same spectral unmixing approaches used to map live coral cover (Goodman and

Ustin 2007; Lee et al. 1999; Hedley 2013).

5.3.2 Mapping the Water Column

In addition to mapping the seafloor, remote sensing can be used to characterize the

physical environment surrounding a reef ecosystem. Applications of satellite remote

sensing have been demonstrated for mapping surface layer concentrations of chloro-

phyll (Morel and Prieur 1977; Moses et al. 2009), coloured dissolved organic matter

(CDOM) (Morel and Gentili 2009) and suspended sediment (Globcolour 2008), as

well as sea surface temperature (SST) (Maina et al. 2008; McClanahan et al. 2007;

Strong et al. 2000). SST has routinely been mapped from satellite data since the early

1970s, with a globally consistent temperature records available from 1981 (Casey

et al. 2010). The accuracy of temperature estimates has improved through time with

development of increasingly sophisticated sensors (e.g. MODIS, AATSR). The long

global SST data record allows remote sensing to directly map the historical temper-

ature variability of coral reef sites, one of the factors identified as important for coral

reef resilience. Surface layer chlorophyll concentration was first mapped on a global

scale by the CZCS sensor (1978–1986), and has been continuously mapped since first

operation of the SeaWiFS sensor (1997–2010), with additional products available

from the MERIS (2002–2012) and MODIS (2000–present) sensors. Derivation of

near-surface chlorophyll concentration is based on observations of ocean colour, with

algorithms for chlorophyll concentration retrieval differing between sensors, and as a

result of regional optimization (O’Reilly et al. 2000; Curran and Dash 2005). Ocean

colour is similarly the basis for operational algorithms used to derive concentrations

of CDOM (Morel and Gentili 2009) or CDM (which includes CDOM as well as

coloured detrital materials) (Siegel et al. 2005), as well as suspended sediment

(Globcolour 2008). While ocean colour and SST algorithms are now routinely

applied to data from several satellite sensors, producing freely available data with

daily near-global coverage at 4 km spatial resolution (NASA 2014), it is important to

note the algorithms employedwere developed and calibrated for Case I waters (Jerlov

1968), oceanic waters where ocean colour is negligibly influenced by terrigenous

particles, and where the spectral radiance recorded by satellite sensors is not

influenced by seafloor reflection. Application is thus questionable for coral reef

environments (Ouillon et al. 2008), where RTM inversion algorithms hold the

greatest promise for mapping water optical quality (and constituents) from space

(Giardino et al. 2007). Combinations of airborne lidar and hyperspectral data

have also shown great promise for direct derivation of water quality parameters

including chlorophyll (Aitken et al. 2010) and suspended sediment concentrations

(Epps et al. 2010), the latter of which can also routinely be mapped with acoustic

methods (Bunt et al. 1999; Hoitink and Hoekstra 2005).
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5.3.3 Mapping and Modeling the Seascape Context

The ability of a coral reef to recover after disturbance and the rate and trajectory of

that recovery will be influenced by its connections with the surrounding seascape

(Mumby and Hastings 2008; Jones et al. 2009). Connectivity is critical for repleni-

shment of corals, fishes and other species that form coral reef ecosystems, but can

also be linked to the spread of pollution, invasive species and diseases (Hughes

et al. 2010). In coral reef ecology, connectivity is usually studied with particle

dispersal models where the focus is on identifying the distribution and movement

pathways of larval transport. Progress in larval connectivity modeling has been

thoroughly reviewed in the existing literature (Jones et al. 2009). Here we focus on

how remote sensing data can help to identify coral reefs that are structurally

connected to other benthic habitat types by the movement of post-settlement fishes.

The knowledge of ecological connectivity between coral reefs and neighboring

habitat types such as seagrasses and mangroves is not new (Parrish 1989), yet it is

only recently that this inter-habitat connectivity has been linked to reef resilience

(Mumby and Hastings 2008; Olds et al. 2013). Underwater observations of the

spatial patterns of fish distributions on coral reefs near and far from ‘nursery

seascapes’, such as mangroves and seagrasses, have highlighted the importance

of structural connectivity (Grober-Dunsmore et al. 2009; Nagelkerken et al. 2012).

For example, in Belize, Mumby et al. (2004c) found that mangroves strongly

influence the community structure of fish on neighbouring coral reefs and boosted

biomass of some reef-associated fish species. Subsequent simulations indicated that

enhanced herbivory by parrotfishes on deeper reefs near mangroves resulted in

greater coral recovery from intense hurricanes, whereas reefs without ecosystem

connectivity had lower capacity for recovery (Mumby and Hastings 2008). In the

Bahamas, high levels of parrotfish herbivory led to a twofold increase in coral

recruitment (Mumby et al. 2007a, b). Thus, for some reefs, connectivity to man-

groves infers greater resilience to disturbance. A similar mangrove-enhanced

trophic cascade that reduced algal cover and enhanced coral recruitment and reef

resilience was identified in eastern Australia (Olds et al. 2013).

In landscape ecology, structural connectivity is measured by the spatial arrange-

ment of patches in the seascape using a wide range of spatial pattern metrics from

simple proximity measures (i.e. nearest neighbor distances) to more complex graph

theoretic approaches (Calabrese and Fagan 2004). Although rarely applied to coral reef

ecosystems, these metrics can be readily applied to benthic habitat maps to calculate a

spatial proxy for functional connectivity (Grober-Dunsmore et al. 2009; Wedding

et al. 2011). Very little is currently known about the relevance of seascape pattern

for reef resilience or the ecological consequences of movements on populations

and ecosystem patterns and processes. The landscape ecology approach, with its

focus on spatially-explicit pattern-process analysis, offers great potential to

support ecologically effective strategies for restoring and optimizing connectivity.

For example, when marine reserves are placed to protect well connected habitats

then the rate of recovery will likely be enhanced (Olds et al. 2013). Landscape
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ecology concepts and tools together with remote sensing data are set to makemajor

contributions to the new study of spatial resilience (Nyström and Folke 2001;

Cumming 2011a). Spatial resilience focuses on the importance of location,

connectivity, and context for resilience, based on the idea that spatial variation

in patterns and processes at different scales both impacts and is impacted by local

system resilience (Cumming 2011b).

5.3.4 Mapping Threats and Stressors

Natural physical impacts on the reef environment include long-term wave exposure

as well as extreme events such as hurricanes. Long-term wave exposure can be

derived at coarse resolution (~25 km) directly from wind wave models (Tolman and

Alves 2005) or extracted from climatological reanalyses (Caires and Sterl 2005),

while hurricane exposure can be depicted statistically from historical hurricane data

(Edwards et al. 2011). However, the anthropogenic physical impacts identified as

an important factor influencing reef resilience (McClanahan et al. 2012) include

damage from reef trampling and diving, ship groundings and coral mining, all of

which are difficult or impossible to map directly using remote sensing. While these

may correlate with proxies such as the distance to human settlements, data from

interviews or field observations are more likely to provide spatial information on

anthropogenic physical impacts. Similarly, fishing pressure, another important

resilience indicator, cannot be mapped directly using remote sensing, although

proxies such as distance to settlements, port infrastructure or markets may be

used to provide quantification of relative fishing pressure between different sites

(Rowlands et al. 2012).

5.4 Direct Monitoring

An alternative to mapping resilience indicators is to map and monitor relevant reef

state variables such as the fractional cover of corals and macroalgae through a period

before, during and after a major disturbance, to assess the state changes caused by the

disturbance (resistance), as well as the time taken to reach the pre-disturbance state

(recovery), thus providing a direct measure of engineering resilience to the specific

disturbance event. In-situ hyperspectral measurements have shown that significant

differences in spectral reflectance exist between corals and macroalgae (Holden and

LeDrew 1998; Myers et al. 1999; Hochberg and Atkinson 2000), and studies

employing airborne hyperspectral data have shown the potential to utilize these

differences for monitoring. However, the limited availability of hyperspectral data

means that any operational monitoring of live coral and macroalgal cover must rely

on multispectral satellite data, at least until the launch of EnMAP expected in 2015.

Encouragingly, a few studies using time series of Landsat TM/ETM+ data (Dustan

et al. 2002; Phinney et al. 2002; Palandro et al. 2003) have demonstrated correlations
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between measures derived from multi-spectral satellite data and transitions from

coral- to algal-dominated reef benthos over a ~15 year period for two reef sites in

Florida. Although no remote sensing-based coral reef monitoring system exists and

successful replication of these studies elsewhere is needed, these studies suggest that

monitoring of live coral and macroalgal cover may be possible both retrospectively

and operationally. The potential of this approach will be further improved by

availability of data from sensors with improved spatial and spectral resolutions

such as Landsat 8 OLI and Sentinel-2 MSI (launch expected 2014).

5.5 Spatial Distribution Modeling

For resilience indicators that cannot be mapped directly, spatial distribution modeling

can be used to predict distributions across geographical space by extrapolating the

statistical relationship between remotely sensed environmental variables and

georeferenced field observations (Franklin 2009; Pittman and Brown 2011; Knudby

et al. 2013a). Spatial distribution modeling relies on a two-step process. In the first

step, a predictive model is calibrated based on an observed statistical relationship

between the resilience indicator in question and one or more environmental variables

with known spatial distribution. For example, several studies have demonstrated

statistical relationships between fish herbivore biomass and environmental variables

such as geomorphologic zone (Friedlander and Parrish 1998), seafloor structural

complexity (Pittman et al. 2009), and habitat heterogeneity (Purkis et al. 2008).

Model calibration requires georeferenced field observations of the resilience indicator

in question, as well as maps of the environmental variables thought to structure its

spatial distribution. In the second step, the predictive model is applied to the

environmental variable maps to produce per-pixel predictions of the resilience

indicator (Franklin 2009; Knudby et al. 2013a). Spatial distribution modeling has

been extensively used to map distributions of species and habitats in both terrestrial

(Guisan and Thuiller 2005; Elith and Leathwick 2009) and marine environments

(Cheung et al. 2008; Pittman et al. 2009; Knudby et al. 2013b). Even when maps of

the relevant environmental variables are not available or possible to derive from

remote sensing, spatial interpolation/extrapolation methods can be used to predict the

spatial distribution of resilience indicators (Knudby et al. 2013a; Mumby

et al. 2013b). Spatial predictive modeling has also been used to forecast changes to

the quality of fish habitat due to declines in the topographic complexity of coral reef

terrains (Pittman et al. 2011). Such scenario modeling can be used to investigate the

potential impact of multiple stressors such as thermal stress, ocean acidification,

storms and land-based sources of pollution that can adversely influence the structural

complexity of coral reefs through coral mortality, mechanical breakage, reduced

growth and survival and erosion (Graham and Nash 2013). These questions address

crucial knowledge gaps in our understanding of climate impacts on coral reef fish,

fisheries and coastal livelihoods in a changing world (Wilson et al. 2010). Linkages

between remotely sensed measures of reef complexity and the structure and function

of coral reefs may provide a rapid and cost-effective way to assess the spatial
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complexity of reef resilience and predict impacts to a wide range of goods and

services provided by coral reefs (Pratchett et al. 2014).

5.6 Case Studies

With a combination of remote sensing and spatial distribution modeling, it is

possible to map biological, physical and human factors known to influence coral

reef resilience, albeit with varying and often unknown degrees of accuracy. In

addition to factors related to resilience (resistance and recovery), remote sensing

has successfully been used to map the exposure to climate-driven disturbance

experienced at different reef sites. Few examples of such resilience-related map-

ping exists for tropical coral reefs, here we present three case studies that represent

the leading edge of this new frontier in marine spatial ecology.

5.6.1 High-Resolution Mapping of Selected Resilience
Indicators in Fiji

In their study of the traditional fisheries management area of Knudby et al. (2013a)

used spatial predictive modeling to map four of the resilience indicators listed in

Table 5.1: stress-tolerant coral taxa, coral diversity, herbivore biomass, and coral

recruitment (quantified as the density of juvenile corals), as well as herbivore

functional group richness and the live cover of corals and coralline algae, both of

which may also influence reef resilience. The range of resilience indicators mapped

in this study was limited by available field data, and focused on indicators that could

not be mapped with existing methods but were thought to exhibit significant small-

scale variability within the study area, a >260 km2 complex reef system.

Georeferenced field observations of the resilience indicators were derived from

the Wildlife Conservation Society’s reef monitoring program, from which data for

66–72 sites were available depending on resilience indicator. IKONOS and

QuickBird satellite images were used to derive maps of bathymetry, geomorphol-

ogy and reef benthos (Knudby et al. 2011), which in turn were used to map a coral

cover index, seafloor structural complexity and habitat richness, all of which were

calculated at spatial scales ranging from the smallest possible (individual

16 m2 pixels) to those incorporating large parts of the neighbouring landscape

(>3 km2). Spatial layers quantifying distances to land, nearest seagrass bed, and

nearest mangrove stand were also derived, as was a layer describing the conserva-

tion status of different areas (unprotected, tabu, no-take reserve). Two types of

spatial predictive models were then used to produce maps of each resilience

indicator. Regression modeling was conducted with random forest (Breiman

2001), a non-parametric tree-based ensemble classifier that predicts per-pixel

values for each resilience indicator based on their statistical relationship with the
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spatial data layers. Spatial interpolation/extrapolation was conducted using univer-

sal kriging (Krige 1951), a geostatistical method that does not utilize the spatial data

layers but rather fits a deterministic trend to the large-scale spatial variation in the

value of each resilience indicator, and then uses locally optimized spatial interpo-

lation of the residuals to account for small-scale spatial variations (Goovaerts

1997).

The results from Knudby et al. (2013a) suggested that, based on the data

available, the spatial distribution of stress-tolerant coral taxa and herbivore biomass

could be reasonably well predicted using the random forest model, while the

density of juvenile corals could only be poorly predicted using the universal kriging

model and coral diversity was essentially unpredictable. An example output, the

predicted spatial distribution of juvenile coral density from each of the two models,

is provided in Fig. 5.2. Numerous factors contribute to limited predictability of

Fig. 5.2 Predictions of the spatial distribution of juvenile coral density across the Kubulau

traditional fisheries management area, Fiji (Knudby et al. 2013a). Points indicate field observa-

tions while the coloured background illustrates the model predictions. Universal Kriging (UK)
predictions are shown on the left, Random Forest (RF) predictions are shown on the right
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field-measured resilience indicators in this study, including mismatch between the

spatial scale of field sites (belt transects, point intercept transect and quadrats, all

covering different areas) and that of the satellite data (4 m for IKONOS, 2.4 m for

QuickBird), imperfect georeferencing of both field sites and satellite data, limited

sample distribution for both resilience indicators and environmental predictors,

and, importantly, inability to incorporate information on past disturbance history,

direct human impacts from fishing and other reef use, the influence of source

populations and ocean and tidal currents on coral and fish recruitment, and the

direct influence of wave exposure on post-settlement coral survival and growth.

Some of these limiting factors can be easily addressed in future studies, while others

will require substantial effort in data collection and analysis.

In addition, the results illustrated that the choice of modeling method, beyond

producing different estimates of prediction error, also produced markedly different

mapped predictions for each resilience indicator. As would be expected, predictions

based on the random forest model tightly matched distributions of influential

environmental predictors and thus changed quickly across steep environmental

gradient such as reef edges, while predictions based on universal kriging varied

more smoothly through space but were also better able to account for spatial

clustering of high or low resilience indicator values when these were unrelated to

the reef environment. The relative strengths of the two modeling methods suggest a

potential for error reduction with hybrid models such as regression kriging (Hengl

et al. 2004).

5.6.2 High-Resolution Mapping of a Coral Reef Resilience
Index in Saudi Arabia

Focusing on coral reefs in the Saudi Arabian Red Sea, Rowlands et al. (2012)

mapped aspects of coral reef resilience using a geographic information system

(GIS) approach. A novel metric termed the Remote Sensing Resilience Index
(RSRI) was developed that quantified and mapped important factors influencing

reef resilience in the Saudi Arabian Red Sea (Fig. 5.3). RSRI was calculated at

1 km2 ground resolution across a geographic extent of 20,000 km2. The spatial

resolution and extent are appropriate for addressing both local and regional man-

agement concerns. RSRI maps three key spatial gradients: (1) human use gradients;

(2) physical gradients; and (3) biological and sediment gradients. These were

considered within two classes of resilience indicators: (1) those which positively

affect the reef community, termed landscape indicators and incorporated into the

Coral Resistance Index (CRI); and (2) indicators that negatively impact reef

communities, termed stress indicators and incorporated into the Coral Stress

Index (CSI) (see Box 5.1).

Meter-scale habitat and water depth mapping, satellite derived SST, night time

imagery, and spatial modelling were all used to develop map-based indices of
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important resilience indicators. Data sources included both freely available satellite

data (NASA, Google Earth), and archived and tasked QuickBird satellite

(DigitalGlobe Inc.) imagery funded by the Khaled bin Sultan Living Oceans

Foundation. In the original formulation of RSRI three landscape indicators were

considered: (1) live coral abundance; (2) framework abundance; and (3) water

depth variability, and three stress indicators were considered: (1) fishing; (2) indus-

trial development; and (3) temperature stress. Subsequent analysis by Rowlands

(2013) used a more refined approach, using maps of water depth and wave exposure

to incorporate the vulnerability of sites to coral bleaching events and modelling the

distribution of high coral sites with greater certainty.

Fig. 5.3 The remote sensed resilience index (RSRI) mapped for the outer Farasan Banks in the

Saudi Arabian Red Sea. The inset image to the right highlights a region with many high RSRI grids

(Adapted from Rowlands et al. 2012)
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By adjusting the weight attributed to each input index, a number of resilience

scenarios are considered for Saudi Arabia. Noting that resilient reefs can act as both

repositories and also sources of reef organisms enabling recovery after a chance

mortality event (Nyström and Folke 2001; Pinsky et al. 2012), several scenarios

were modeled to explore the role of local feedback. Changing the relative impor-

tance of input indices, and calculating with or without local feedback produced

nonlinear responses in RSRI, emphasizing the need to understand spatial dynamics

when assessing spatial resilience.

The study showed that seascape morphology exerts a strong controlling role on

reef resilience through the abundance of habitat, topography, and exposure to

anthropogenic and physical stress. Understanding of the processes creating mor-

phology in the Saudi Arabian Red Sea and elsewhere will therefore be helpful in

targeting research and management towards the most resilient reef sites.

5.6.3 Mapping Exposure of Coral Reefs to Climate-Driven
Environmental Stress

In addition to spatial information on the factors that enable coral reefs to resist and

recover from climate-driven impacts, managing for coral reef resilience requires a

Box 5.1. Equations used to calculate the Remote Sensing Resilience

Index (RSRI)

The remote sensed resilience index (RSRI), is calculated according to Eq. 5.1
to be:

RSRI ¼ CRIn � CSIn
max CRIn � CSInð Þ ð5:1Þ

Positive influence is provided within the coral resistance index (CRI)
shown in Eq. 5.2, while negative influence is provided by the coral stress

index (CSI) shown in Eq. 5.3. All indices are normalized to a 0–1 scale.

CRIn ¼ Lw1 � LF1ð Þ þ :::: Lwn � LFnð Þð Þ
max Lw1 � LF1ð Þ þ :::: Lwn � LFnð Þð Þ ð5:2Þ

CSIn ¼ Sw1 � SF1ð Þ þ :::: Swn � SFnð Þð Þ
max Sw1 � SF1ð Þ þ :::: Swn � SFnð Þð Þ ð5:3Þ

LF and SF represent the map-based landscape and stress resilience indi-

cators. Lw and Sw represent weighting factors, attributed to each resilience

indicator and adjusted to model a range of resilience scenarios.
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better understanding of the magnitude and spatial distribution of threats, their

interactions, and respective roles they play in impacting coral reefs. Threats maps

and ecosystem vulnerability studies in historical and future time scales and at

multiple spatial scales have therefore become an important research focus (Bruno

et al. 2007; Maina et al. 2008, 2011; Selig et al. 2010; Burke et al. 2011; Gove

et al. 2013; van Hooidonk et al. 2013, 2014). Often these regional and global scale

models utilize modelled and remotely sensed data as inputs, highlighting the

increasingly important role of remote sensing in decision support. Among these,

multivariate stress models (Maina et al. 2008, 2011) have used a relatively more

complicated multivariate approach including fuzzy logic techniques of integrating

multiple variables and stress proxies derived from remote sensing data (Logan

et al. 2014). Fuzzy logic provides a platform for translating the absolute values of

environmental variables into indices that represent the exposure of coral reefs to the

respective threats. Such procedures are informed by the perceived role of the

environmental variable on coral health, as supported by empirical findings or expert

knowledge. Fuzzy logic models are also easy to apply as they allow for use of fuzzy

operators, which are useful in synthesizing the partial exposures into an overall

exposure or vulnerability metric. Moreover, this modeling framework is relatively

flexible for modifications to accommodate any lurking variables and new science.

In their global analysis, Maina et al. defined three broad categories of environ-

mental stressors. These included: (1) radiation stress indicators which are consid-

ered to be the primary climatic drivers of coral reef exposure (temperature, UV light

and doldrums); (2) stress-reinforcing indicators (sedimentation and eutrophication)

which have been shown to reinforce radiation stressors; and (3) stress-reducing

indicators (temperature variability and tidal amplitude) which act to reduce or

balance thermal stress. Following these definitions, a systems analytical approach

and fuzzy logic functions were used to represent the interactions among radiation

stress variables, stress reinforcing variables and stress reducing variables. For each

of these broad stress categories, constituent variables were derived from various

sensors within the ocean realm.

SST time series from 1982 to 2010, produced using data from NOAA’s

Advanced Very High Resolution Radiometer (AVHRR) sensors, were used to

produce global maps of mean absolute temperature, mean maximum temperature,

and temperature variability. Thermal stress metrics, including time series of weekly

SST anomalies (WSSTAs), defined as the weekly averaged temperature in excess

of 1 �C or more above that week’s long term average value, and thermal stress

anomalies (TSAs), defined as the temperature excess of 1 �C or more above the

climatologically warmest week of the year were computed. Cumulative estimates

of TSAs and WSSTAs were calculated from annual averages in the 27 year time

series. Further, for each year, a maximum duration (in weeks) that WSSTA and

TSA were greater than or equal to 1 �C were computed and averaged over 27 years.

These two cumulative metrics, the mean annual cumulative and mean yearly

maximum duration, represent the characteristic magnitude and duration of the

anomalies at a given location, which are important predictors of coral stress

(Bruno et al. 2007; Selig et al. 2010). UV-erythemal (biologically damaging)
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irradiance at the Earth’s surface was mapped in a 1 by 1.25� grid using data from

1996 to 2001 from the total ozone mapping spectrometer (TOMS) (Herman

et al. 1999; Vasilkov et al. 2001). Doldrums (i.e. wind conditions with a daily

mean of less than 3 ms�1) were computed using daily averaged wind speeds (2000–

2009) and the averaged 10-year mean monthly wind speeds (1995–2004). To

estimate the magnitude and consistency of wind regimes in a given location, a

doldrums metric was computed by taking the annual average maximum number of

days that wind speeds were greater than 3 ms�1 over 10 years (2000–2009) and

multiplying this by the 10-year mean monthly average. To represent tidal condi-

tions, modelled tidal data (Le Provost et al. 1998) was used where tidal ranges were

computed as the long term averaged difference between the weekly maximum and

minimum simulated tidal heights.

As outlined earlier, concentrations of nutrients and suspended sediment are

operationally mapped from ocean colour data, but algorithms are calibrated for

Case I waters and fail in turbid coastal waters (Morel and Bélanger 2006) as well as

in shallow areas where sunlight reflected off the seafloor increases the reflectance of

the water/seafloor system, leading to overestimations of suspended particles (Boss

and Zaneveld 2003). Given these problems, until special algorithms that take into

account the complexity in coral reef areas (e.g. Ouillon et al. 2008) are developed

and incorporated in the standard processing chains of the current ocean color

satellites, the usefulness of ocean color data for coral reef applications will remain

limited (Boss and Zaneveld 2003; Mumby et al. 2004a). To overcome this, Maina

et al. (2011) analyzed the global ocean color data such that appropriate algorithms

were applied in the respective water types. Further they applied a depth flag of 30 m

to remove shallow water before extrapolating values from nearby deep-water pixels

into the shallow areas. While this product avoided the problems associated with

high reflectivity of complex coastal areas, optical properties estimates in highly

turbid coastal areas such as river mouths were underestimated (Gove et al. 2013).

Based on the above data sets, modeling of coral reef stress exposure involved

two key steps. First, summaries of environmental layers comprised within each of

the three categories of stressors were converted into partial exposures using fuzzy

logic equations. Second, exposure layers for each of the three categories were

synthesized using fuzzy-logic operators. The resulting multivariate exposure

model provided estimates of coral reef exposure to climate stress worldwide

where coral reefs are found.

The multivariate stress model by Maina et al. (2011) found high within-region

variability, and spatial heterogeneity of exposure to radiation and both reinforcing

and reducing stress categories. Furthermore, the magnitudes of radiation and

reinforcing stressors were analyzed in order to facilitate appropriate management

decisions. For instance, while reduction of climate-driven stress is impossible in the

short term, management can act to reduce reinforcing stress on corals through a

pollution reduction strategy. Findings from the analysis of the exposure model

advanced coral threat mapping by providing evidence of spatial differences in

exposure to multiple stressors, highlighting potential utility of the spatial adaptive

management approach to coral reef conservation, and developing a frame work for
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exposure analysis applicable at local scales for implementation purposes. While the

model has found application in social vulnerability analyses Cinner et al. (2013),

its implementation for local scale coral reef management is yet to be realized.

Ideally, application of the model at the local scale would require downscaling

where in situ measurements of the constituent variables in the model would be

used. Furthermore, other useful information not currently incorporated in the

model, for example habitat typologies and socio-economic indicators, would

improve the models performance and its utility in aiding management decisions.

5.7 Spatially Explicit Resilience Modeling

Informative as they may be, maps that quantify either exposure to stress and

disturbance or factors that influence resilience do not by themselves allow quanti-

fication of coral reef resilience. Engineering resilience can be quantified as the

magnitude of deviation from, and speed of return to, the stable state following a

disturbance, while ecological resilience can be quantified as the amount of distur-

bance the system can be exposed to without moving beyond its current domain of

attraction and transitioning to another stable state (Holling 1996). To properly

quantify resilience we thus need mechanistic models that allow simulation of

how key ecosystem state variables (e.g. coral and algae cover) through interaction

with other components of their ecosystems respond to both chronic stress and

periodic disturbances through time (Mumby and Hastings 2008). Parameters used

in such models should at a minimum include the critical state variables, factors they

interact strongly with and which therefore are important for determination of

resilience, and realistic stress and disturbance regimes that the ecosystems can be

subjected to in model simulations.

An early example of a coral reef ecosystem simulation model was developed by

McClanahan (1995). Although not explicitly developed to study coral reef resil-

ience, the model quantifies a set of core ecosystem state variables and their

interactions using an energy-circuit diagram (Odum 1983). Model coefficients

that quantify development of individual ecosystem components and interactions

between different components are derived from field observations. Using fixed time

steps the model can be run until negligible change in state variables is seen and a

stable state has emerged, using either a business-as-usual scenario or one of several

simplified management scenarios (e.g. allowing fishing activity to remove all

piscivores, or both piscivores and herbivores). Although results were demonstrated

by McClanahan (1995) to broadly match field observations from a number of

Kenyan reefs, the model suffers from several limitations, including fixed instanti-

ation (the starting values of all state variables), no inclusion of large-scale distur-

bance events, no inclusion of information on recruitment, and a lack of spatiality

that prevents modeling of connectivity.
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A more recent model developed by Mumby et al. (2007a, b) similarly allows

simulation of states and interactions between core ecosystem variables, focusing on

coral-algal dynamics. Allowing variable instantiation this model illustrates how, in

the absence of an external disturbance regime, the initial state of the system

determines whether it will gradually develop toward a coral-dominated or an

algal-dominated stable state. The model also allows introduction of a stochastic

disturbance regime (e.g. hurricanes causing 20 % coral mortality occurring on

average every 20 years) as well as chronic stresses (e.g. annual removal of a certain

amount of fish herbivore biomass) to examine the effect of pulse disturbances and

chronic stresses on coral-algal dynamics. The use of a stochastic disturbance regime

additionally allows multiple model runs with identical instantiations to produce

different results, which in turn enabled Mumby et al. to define a useful measure of

coral reef resilience – the probability that the reef would be in a coral-dominated

state after a given time period. This model was recently applied to the Belize

Barrier Reef System (Mumby et al. 2013b), with a spatially explicit disturbance

regime defined on a 16 km2 cell-by-cell basis using information on hurricane tracks

from 1909 to 2008 and predictions of future sea surface temperatures derived from

two climate scenarios. Reef state variables were derived from interpolation of field

observations. This spatially explicit model instantiation and disturbance regime

definition allowed exploration of differences in resilience between different parts of

the studied reef system, and also allowed spatially explicit evaluation of potential

management interventions (e.g. protection of parrotfishes was shown to be impor-

tant for reef resilience in parts of central Belize, but less so in southern Belize where

reef resilience was already high).

Another model, developed by Melbourne-Thomas et al. (2011) specifically as a

decision-support tool, provides a core of ecosystem variables and interactions

similar to the previously discussed models but is inherently spatial in nature and

also specifically incorporates connectivity by larval transport (though not by move-

ment of adults). Larval dispersal is simulated using lower-resolution hydrodynamic

and particle-tracking modules and includes basic larval behavior (i.e. coral, fish and

urchin larvae behave differently). Once arrived at a sink reef location, larval

settlement is limited by availability of settlement habitat and mortality of recruits

is modeled differently than adult mortality during the first year after settlement.

A simulation applied to the Meso-American Reef System, using the Millennium

Coral Reef Mapping Project (IMaRS 2004) to define reef locations and spatially

distributed field observations of reef state (Garcia-Salgado et al. 2006) to define

initial values of state variables, showed that the model realistically captures eco-

system dynamics and reproduces known historical trajectories of state variables.

This simulation illustrates the current state-of-the-art in resilience mapping and

modeling, relying on a combination of spatially explicit data on state variables and

disturbance regime parameters, and modeling of ecosystem dynamics through time

to assess likely future ecosystem states, including the likelihood that part of or all of

the reef ecosystem will flip to an alternate stable state.
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5.8 Management Applications

In many parts of the world resource managers are operating with limited funds, and

therefore require cost effective, reliable, spatially-explicit and easily interpretable

information to help prioritize coral reef sites for risk assessments and conservation

actions. Managers may be required to develop a conservation investment portfolio

that prioritizes management actions to coral reefs of highest conservation status or

exhibiting greatest resilience to stressors, or they may wish to spread investments

over a wider range of risks that include reefs with low resilience but high importance

to local industry. Reefs with lower resilience may have potential to rapidly regenerate

to their former status if targeted action is taken to reduce stressors i.e. reducing runoff

through watershed restoration. The great problem for current coral reef conservation

is to operationalize our understanding of ecosystem resilience and apply it for

management. Here we illustrate one approach to addressing this challenge with a

decision-support framework for prioritizing coral reef units for conservation action,

currently under development in the U.S. Virgin Islands (USVI).

Coral reefs across the USVI vary geographically in their diversity, structure,

resilience and economic and aesthetic importance to people. To prioritize actions,

effective management requires knowledge of the locations of the ecologically and

economically most important coral reefs, their resilience to stressors and expectations

for rapid recovery when management action is taken to reduce stressors. Interdisci-

plinary research is underway in the USVI as a collaboration between NOAA, The

Nature Conservancy, University of the Virgin Islands, USVI government, local

professional dive industry (dive operators and scientific divers) and other local

partner agencies to develop a decision-support tool that integrates environmental

data (remote sensing, ocean models and in-water biological surveys) with local expert

knowledge from underwater observations, maps of stressors, and predictions of the

locations and attributes of resilient reefs. To quantify structural connectivity,

NOAA’s benthic habitat maps are being used to rank reefs based on their proximity

to seagrasses and mangroves. In addition, sites of ecological and biological signifi-

cance are identified using spatial predictive models of fish species richness and

known locations of fish spawning aggregations. Sites with high biodiversity have

been associated with high topographic complexity. For unsurveyed areas, predictive

modeling used bathymetry data as a proxy by classify the seafloor terrain into high,

medium and low topographic complexity. These patterns will be combined with

locations identified as important to local professional SCUBA divers (scientific and

commercial dive industry).

The decision support framework (Fig. 5.4) will identify and rank the most

important reefs for conservation concern in USVI. By evaluating resilience metrics

and incorporating a resilience index into a comprehensive and transparent spatial

matrix of site importance this project will objectively rank sites into several

categories that will identify: Class A Reefs) the most important and best examples

of coral reefs in the USVI; Class B reefs) coral reefs that have high potential to

become Class A reefs with strategic conservation actions; Class C reefs) coral reefs
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that have some importance, but have low potential for recovery even with consid-

erable conservation effort.

The framework is being designed to address multiple management objectives

with a greater understanding of the spatial heterogeneity of reef resilience being a

central objective. Data will feed the USVI government permitting system, enhance

risk assessments, support management plans for MPAs, lay foundations for regional

ocean governance and begin to map resiliency to identify and rank “reefs of hope”.

This synoptic product ensures that management processes and strategic planning

decisions are guided by best available information.

5.9 Conclusion

A new paradigm has emerged for coral reef management – managing for resilience.

This approach aims to sustain and enhance the ability of coral reefs to resist and

recover from periodic disturbances made increasingly frequent and severe by a

changing climate, while simultaneously being subjected to chronic stress from

more direct human impacts. Managing for resilience requires, first and foremost,

an understanding of what contributes to or detracts from the resilience of a coral

reef, and secondly information on the spatial distribution of resilience across

management areas of varying size. Remote sensing, spatial distribution modeling

and ecosystem simulation modeling combine to form a trio of rapidly developing

technologies that can be employed to provide such information. Although in its

infancy, this combination of technologies is already being explored for regional-

scale mapping of coral reef resilience, producing the kind of spatially explicit

information demanded. Through decision-support frameworks this information

can be translated into management action. Maps of reef resilience will show

improvement as: (1) research sheds new light on the influence of a wider range of

environmental factors on aspects of coral reef resilience; (2) remote sensing

technology improves and distribution modeling matures; 3) ecosystem simulation

models become increasingly adept at incorporating a wider range of species or

functional groups as well as information on larval and adult connectivity, seascape

context, disease and invasive species. Improved maps of resilience will enable

better management on coral reefs.
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