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ABSTRACT

Aim Connectivity structures populations, communities and ecosystems in the sea.
The extent of connectivity is, therefore, predicted to also influence the outcomes of
conservation initiatives, such as marine reserves. Here we review the published
evidence about how important seascape connectivity (i.e. landscape connectivity in
the sea) is for marine conservation outcomes.

Location Global.

Methods We analysed the global literature on the effects of seascape connectivity
on reserve performance.

Results In the majority of cases, greater seascape connectivity inside reserves
translates into better conservation outcomes (i.e. enhanced productivity and diver-
sity). Research on reserve performance is, however, most often conducted sepa-
rately from research on connectivity, resulting in few studies (< 5% of all studies
of seascape connectivity) that have quantified how connectivity modifies reserve
effects on populations, assemblages or ecosystem functioning in seascapes. Never-
theless, evidence for positive effects of connectivity on reserve performance is
geographically widespread, encompassing studies in the Caribbean Sea, Florida
Keys and western Pacific Ocean.

Main conclusions Given that research rarely connects the effects of connectivity
and reserves, our thesis is that stronger linkages between landscape ecology and
marine spatial planning are likely to improve conservation outcomes in the sea. The
key science challenge is to identify the full range of ecological functions that are
modulated by connectivity and the spatial scale over which these functions enhance
conservation outcomes.
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INTRODUCTION

We are like islands in the sea, separate on the surface but con-

nected in the deep.

William James

Movements of organisms, matter and energy are key ecologi-

cal processes, connecting populations, habitats, food webs and

ecosystems (Massol et al., 2011; Hyndes et al., 2014). This con-

nectivity is also central to understanding population viability

and the resilience of ecosystems to disturbance (Bernhardt &

Leslie, 2013; Magris et al., 2014). The fundamental importance

of these linkages has long been recognized (Odum, 1968), and in

recent years connectivity has become an increasingly important

consideration in spatial conservation planning, complementing

the long-standing focus on species persistence, habitat quality

and area (Moilanen et al., 2009; Hodgson et al., 2011; Kool et al.,

2013). Examples of an increasing integration of connectivity in

conservation include: optimizing the placement of reserves and

the spacing of reserve networks; identifying and protecting key

corridors of animal migration; limiting the spread of invasive

species; and promoting the restoration of fragmented land-

scapes (Rudnick et al., 2012; Green et al., 2014).
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In the sea, as on land, the area, quality and spatial arrange-

ment of habitats are key determinants of the distribution, move-

ment, growth and survival of organisms (Irlandi & Crawford,

1997; Micheli & Peterson, 1999). Physical linkages between dis-

continuous habitats (either of the same or of different types) of

the seafloor represent seascape connectivity (i.e. landscape con-

nectivity in the sea); this connectivity can be quantified as func-

tional connectivity (i.e. documented movement of organisms

among patches or habitats) or structural connectivity (i.e. dis-

tribution of organisms or processes in relation to the spatial

configuration of patches or habitats) (Grober-Dunsmore et al.,

2009). The importance of seascape connectivity has been well

documented for post-settlement fish and crustaceans (i.e. indi-

viduals that have successfully recruited to a habitat or assem-

blage), which move among different habitats to spawn, forage or

undertake ontogenetic habitat shifts (Pittman & McAlpine,

2003; Sheaves, 2009; Boström et al., 2011). Moreover, seascape

connectivity influences the spatial distribution of fish popula-

tions and fisheries catches and the outcomes of conservation

initiatives (Nagelkerken et al., 2012; Olds et al., 2013).

Although connectivity is now a key consideration for marine

conservation planning (Green et al., 2014; Magris et al., 2014),

few studies actually provide empirical data about the conserva-

tion benefits of connectivity in marine ecosystems. There is a

new urgency to address this knowledge gap because human

activity has altered the condition of, and level of connectivity

among, coastal populations, habitats and ecosystems (Boström

et al., 2011; Hyndes et al., 2014; Nagelkerken et al., 2015). For

example, wetlands are being increasingly fragmented by coastal

development, and the physical complexity of coral reefs is being

eroded at a global scale with unanticipated consequences for

connectivity, ecological resilience and provisioning of ecosystem

services (Unsworth & Cullen, 2010; Rogers et al., 2014). Further-

more, overharvesting of mobile consumers (e.g. fish, crusta-

ceans) and the construction of barriers (e.g. dams, weirs, levees,

sea walls) to animal migration has also physically degraded

key connectivity pathways, affecting food webs, assemblage

composition, population viability and the condition of marine

ecosystems (Fig. 1) (Valentine et al., 2008; Nagelkerken et al.,

2015).

General concepts and paradigms in seascape ecology and con-

nectivity have been reviewed elsewhere (e.g. Grober-Dunsmore

et al., 2009; Boström et al., 2011; Pittman & Olds, 2015), but no

synopsis exists that explicitly addresses the question of whether

and how connectivity enhances the effectiveness of marine

reserves. Here we review studies of seascape connectivity (i.e.

connectivity among habitats in seascapes) or habitat connectiv-

ity (i.e. connectivity among patches of the same habitat), focus-

ing on post-settlement fish and crustaceans, to assess whether

greater connectivity translates into consistently better conserva-

tion outcomes for populations, assemblages or ecosystem func-

tioning for reserves. Our review examines connectivity in

seascapes that lie within reserves and span reserve boundaries.

Fish and crustaceans move among habitats in seascapes, are

commonly managed using reserves and are, therefore, ideal

model organisms for examining the role of connectivity in con-

Figure 1 Common seascapes and
impacts on connectivity in marine
ecosystems (coral reefs, left; estuarine
wetlands, right). We illustrate three types
of connectivity: (1) largely unmodified
seascapes with intact connections (a, b),
(2) connections that are exploited to
harvest organisms as they move regularly
across seascapes (c, d), and (3) human
alterations of connections illustrated by
engineering structures (levees, weirs) that
impede movement (e, f). Photographs by
A.D.O., P.S.M., S.A. in Australia (b, e, f),
Papua New Guinea (d), and Solomon
Islands (a, c).
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servation. We discuss implications for spatial conservation plan-

ning and we identify important knowledge gaps to be targeted in

future research.

Our focus in this review is on connectivity of organisms post-

settlement in reef and wetland seascapes, but the concepts and

approach that we address are relevant to other seascapes. Pre-

settlement processes (i.e. larval dispersal, population connectiv-

ity) are also an important consideration in marine spatial

planning (e.g. facilitating network connectivity), but the poten-

tial role of larval dispersal for marine conservation has been

reviewed widely (Cowen & Sponaugle, 2009; Green et al., 2014;

Jones, 2015). To determine the conservation value of seascape

connectivity we have therefore focused on studies that have

examined these effects for adult and juvenile animals.

SEASCAPE CONNECTIVITY AND
MARINE CONSERVATION

Connectivity is important for conservation, mainly because

populations of mobile organisms are spatially linked and adja-

cent ecosystems can function as linked units forming a habitat

mosaic (Massol et al., 2011; Green et al., 2014). Connectivity can

enhance the performance of individual marine reserves (Olds

et al., 2014) and mechanistically links habitat patches in reserves

with those in other reserves, or in adjacent fished waters

(Pittman et al., 2014). Connectivity influences the number of

organisms exported from reserves (both adults and larvae) to

replenish populations in fished waters (i.e. spillover) and links

populations among reserves (e.g. Freeman et al., 2009; Halpern

et al., 2009; Harrison et al., 2012). For example, spillover of fish

from reserves is likely to be greatest where reserves are sur-

rounded by contiguous habitat that provides greater connectiv-

ity (Edgar et al., 2014). This process can, however, also limit the

recovery of fished populations within reserves (Babcock et al.,

2012). Seascape connectivity within reserves and reserve net-

works can also promote ecosystem resilience and facilitate access

to refugia (Bernhardt & Leslie, 2013; Magris et al., 2014). Better-

connected populations and habitats in reserves can recover

more quickly from disturbance through the arrival of individ-

uals or propagules from other locations (i.e. recolonization

effects) (Beger et al., 2010; Green et al., 2014) or via the ecologi-

cal processes (e.g. herbivory) that mobile species provide for the

functioning of ecosystems (Mumby, 2006; Olds et al., 2012).

Connectivity also enables organisms to access refugia in higher

latitudes, or in deeper, cooler water, when moving away from the

thermal impacts of climate change and, therefore, provides the

mechanism for linking reserves across bioregions (Magris et al.,

2014).

Marine reserves provide model systems for investigating the

ecological importance of connectivity for conservation. Marine

reserves can have significant positive effects on the density, body

size, biomass and demographic parameters of harvested fish and

invertebrates (Lester et al., 2009; MacNeil et al., 2015), particu-

larly when reserves prohibit fishing, are well enforced, old (> 10

years), large (> 100 km2) and isolated by deep water or sand

(Edgar et al., 2014). Large consumer populations inside reserves

can also affect the abundance and movement of competitors and

prey species, and drive trophic cascades that structure the con-

dition of benthic communities (Babcock et al., 2010; MacNeil

et al., 2015). Furthermore, marine reserves can promote the

transfer of carbon among ecosystems, linking ecological pro-

cesses and food webs across seascapes (Langlois et al., 2005;

Salomon et al., 2008). These effects on movement ecology and

ecosystem functioning provide key mechanisms through which

reserves influence connectivity (Valentine et al., 2008; Olds

et al., 2012; Pittman et al., 2014).

ECOLOGICAL STUDIES OF
SEASCAPE CONNECTIVITY

To evaluate the importance of seascape connectivity in conser-

vation we compiled a database of all peer-reviewed studies

that reported effects of connectivity on marine fauna and eco-

logical processes. The ISI Web of Knowledge database was

searched using all permutations of the keywords: seascape, con-

nectivity (connect*, link*, move*) and habitat (reef, kelp, man-

grove, saltmarsh, seagrass, wetland). This database was then

refined (using the keywords: MPA, no-take area, protected

area, conservation area, reserve, spillover) to identify studies

that examined connectivity effects in reserves, and those that

directly quantified both connectivity and reserve effects. Con-

nectivity studies focused on structural (i.e. distribution of

organisms or processes) and functional (i.e. movement) meas-

ures (Grober-Dunsmore et al., 2009). Reserve studies were cat-

egorized based on four common criteria for performance:

‘production’ (i.e. abundance, density, biomass), diversity (i.e.

diversity, richness, composition), ecological processes (i.e.

herbivory, predation, recruitment) and spillover (i.e. movement

from inside to outside reserves) (Lester et al., 2009).

We identified 213 studies that reported on connectivity,

of which 143 were in coral and rocky reef seascapes and 70

in wetland systems (i.e. seagrass, mangrove and saltmarsh)

(Fig. 2, Appendix). Most studies were from the Caribbean

Sea (56), Australia (47), the Florida Keys (19), Tanzania (18),

North America (15), the Mediterranean Sea (10), the Gulf of

Mexico (8) and Indonesia (7), illustrating a concentration of

research in tropical seascapes (Fig. 2, Appendix S1 in Supporting

Information).

One fifth (n = 45) of studies that examined connectivity also

addressed questions of marine reserve performance (Appendix

S2). Most of these focused on structural (32) or functional (9)

connectivity for fishes, whilst only four measured connectivity

for crustaceans. All were conducted in reef seascapes (38 in coral

reef and 7 in rocky reef systems), with most studies (35) exam-

ining the conservation benefits of seascape connectivity (i.e.

linkages among different habitat types) and just a few (10)

exploring the importance of habitat connectivity (i.e. linkages

among patches of the same habitat type). There were no con-

sistent differences in spatial scale between studies that examined

seascape or habitat connectivity, or that focused on different

types of organisms. Studies of functional connectivity were,

however, generally conducted over a broader spatial scale (i.e.

The conservation value of seascape connectivity
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thousands to tens of thousands of metres) than studies of struc-

tural connectivity (i.e. hundreds to thousands of metres)

(Appendix S2).

Twenty-seven studies examined connectivity effects inside

reserves without explicitly testing reserve effectiveness (‘connec-

tivity effects inside reserves’). Eight studies quantified connec-

tivity and reserve effects separately (i.e. they evaluated

connectivity but did not examine whether it influenced reserve

performance). Ten studies (i.e. fewer than 5% of seascape studies

that examined connectivity) directly evaluated whether connec-

tivity influenced reserve performance (Fig. 3, Appendix S2).

These findings show that research on marine reserve perfor-

Figure 2 Global distribution of coral reef, seagrass, mangrove and saltmarsh ecosystems (a); marine reserves (i.e. no-take areas), marine
parks (i.e. partial no-take areas) and other conservation areas (i.e. with unknown status) (b); and connectivity studies in reef and wetland
seascapes (c) (Appendix). Information on the extent and geographic distribution of ecosystem types and marine conservation areas has
been sourced from the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC).

A. D. Olds et al.
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mance and seascape connectivity is typically conducted sepa-

rately. This may suggest a separation (in terms of ecological

theory or study design) between the disciplines of conservation

biology and landscape ecology in many marine ecosystems. The

27 studies that examined connectivity inside reserves reported

positive effects of greater connectivity on metrics that are com-

monly used to assess reserve performance, including: produc-

tion (94% of studies), diversity (92%), ecological processes

(100%) and spillover (71%) (Fig. 3, Appendix S2). The same

was true for the eight studies that quantified connectivity

and marine reserve effects separately, with 75–100% of these

reporting positive effects of connectivity on the reserve perfor-

mance measures production, diversity and spillover (Fig. 3,

Appendix S2).

The most compelling result, however, is provided by studies

that were designed specifically to test for interactive effects of

seascape connectivity on reserve performance. Whilst compara-

tively under-represented with 10 out of 45 studies, 80–100% of

these reported positive effects of greater connectivity on pro-

duction (i.e. density or biomass), diversity (i.e. richness or com-

position) or ecological processes (i.e. herbivory, predation or

recruitment) in reserves, compared with fished locations and

reserves supporting isolated habitats (Fig. 3, Appendix S2). In

the Caribbean Sea, for example, connectivity (quantified as

habitat isolation and density at the scale of 200–1000 m) influ-

enced marine reserve effects on fish biomass, species richness

and assemblage composition on coral patch reefs at Glover’s

Atoll, Belize (Huntington et al., 2010). In the Florida Keys, con-

nectivity (quantified as habitat isolation at the scale of

0–100 m) also influenced marine reserve effects on fish abun-

dance and assemblage composition, as well as herbivory and

predation rates, in seagrass meadows adjacent to coral reefs

(Valentine et al., 2008). Similarly, in the western Pacific Ocean

connectivity (quantified as habitat isolation at the scale of 100–

1000 m) influenced marine reserve effects on fish abundance,

species richness and assemblage composition on coral reefs, and

in adjacent mangroves and seagrass (Olds et al., 2013). These

seascape connectivity effects were largely driven by the distri-

bution and behaviour of fish species that regularly use multiple

habitats (or habitat patches) through their lives (e.g. fish from

the families Haemulidae, Lethrinidae, Lutjanidae, Scaridae,

Siganidae). Furthermore, the synergistic impact of reserves and

connectivity on herbivorous fish (family Siganidae) also

enhanced herbivory and coral recruitment on inshore coral

reefs in Moreton Bay, eastern Australia (Olds et al., 2012). The

results of studies that examined connectivity and reserve effects

underscore the importance of cross-disciplinary integration of

concepts and techniques to address new applied research ques-

tions at spatial scales that are operationally meaningful to con-

servation. We acknowledge that publication bias against neutral

or insignificant results and our choice of search terms may have

influenced the pool of literature reviewed (Babcock et al., 2010;

Magris et al., 2014). These factors would, however, not detract

from one of our main findings, namely that studies of reserve

performance and seascape connectivity are often conducted

separately.

Figure 3 Connectivity effects contrasted between study types that incorporated the role of marine reserves to varying degrees: (a) studies
that examined connectivity inside reserves but did not address reserve effects per se; (b) studies that quantified connectivity and reserve
effects separately; and (c) studies that tested for an interaction between connectivity and reserve effects. Circle quarters represent
summaries against reserve performance measures, with the number of studies of each type shown outside (in parentheses) and the total
number of studies inside. The proportion of studies reporting significant effects is illustrated by a quadrant’s size (and provided as
percentages) (see Appendix S2). Panel (d) illustrates some of the principal attributes and mechanisms examined, such as the size and
biomass of fish populations, the composition and diversity of assemblages and trophic interactions (e.g. herbivory). Photographs by A.D.O.

The conservation value of seascape connectivity

Global Ecology and Biogeography, © 2015 John Wiley & Sons Ltd 5



INTEGRATING CONNECTIVITY INTO
MARINE CONSERVATION

Based on the evidence available that strongly suggests a positive

effect of greater connectivity on reserve performance, we rec-

ommend that seascape connectivity should be an important

criterion in marine conservation. Four conditions will often

have to be met when seeking to more comprehensively integrate

connectivity in marine reserve design: (1) evaluate whether the

benefits of connectivity result in a trade-off with other conser-

vation considerations; (2) determine the spatial scales over

which connectivity is likely to benefit reserve performance; (3)

decide on a suitable approach for integrating connectivity into

conservation planning and explicitly consider the effects of

reserves on connectivity; and (4) quantify whether positive

effects of connectivity for particular species (or groups of

species) result in conservation benefits for the functioning of

ecosystems, and vice versa.

Connectivity can have undesirable effects if it promotes the

spread of invasive species, pathogens or pollutants (Rudnick

et al., 2012; Kool et al., 2013). A stronger and more consistent

emphasis on connectivity in conservation planning may also

conflict with other socio-ecological considerations, including

the representation of biodiversity, habitat area or quality (Beger

et al., 2010; Hodgson et al., 2011), and the spatial spreading of

risk to maximize population persistence and ecosystem resili-

ence (Bernhardt & Leslie, 2013; Magris et al., 2014). To be a clear

priority for conservation, the potential benefits of connectivity

must, therefore, exceed these risks and any potential costs to

other conservation objectives.

Spatial scale is a key consideration for both marine conserva-

tion planning and seascape ecology (Magris et al., 2014; Martin

et al., 2015). The synergistic effects of connectivity and reserves

have typically (in six out of ten studies) been reported at the

scale of hundreds to thousands of metres, which corresponds to

tidal, daily and some ontogenetic fish movements (Boström

et al., 2011; Olds et al., 2013), and is smaller than the size of

most reserves (Lester et al., 2009; Huijbers et al., 2014). Within

this range, the positive effects of connectivity will likely decline

with distance, but the scale and shape of such effects may vary

with the spatial extent of seascapes, the particular habitats these

support and the mobility of the species of interest (sensu Olds

et al., 2013). The scale of any such decline-by-distance effect

would also likely vary with the type of connectivity in question,

with population connectivity (i.e. through larval dispersal and

genetic exchange) occurring among habitat patches that are

separated by much greater distances (i.e. tens to hundreds of

kilometres) (e.g. Harrison et al., 2012) than examined here.

Studies are needed to identify factors that determine the scale

over which connectivity effects reserve performance (priority

questions 1 and 2, Table 1).

The identification of seascapes with optimal connectivity for

maintaining biodiversity, productivity and ecosystem function-

ing is now a major goal in applied marine ecology (Pittman

et al., 2014; Nagelkerken et al., 2015). With quantitative data on

the scale of connectivity effects in seascapes, and the mode by

which these affect reserve performance, seascape connectivity

can be integrated into conservation by modifying reserve selec-

tion algorithms to incorporate connectivity (Moilanen et al.,

2009). Decision support tools (e.g. Marxan or Zonation) already

provide some options for incorporating connectivity into con-

servation, and can be refined through further integration of

quantitative data on connectivity (Beger et al., 2010; Magris

et al., 2014). Given the potential for high spatial variability in

connectivity effects, this may be achieved by prioritizing the

conservation of seascapes that contain large, high-quality

patches of multiple habitats (e.g. coral reefs and mangroves)

within the spatial extent of species dispersal capabilities (i.e.

home ranges, ontogenetic habitat shifts, pelagic larval duration)

(e.g. Beger et al., 2010; Edwards et al., 2010; Nagelkerken et al.,

2015). This approach will have important consequences for how

we rank the conservation of different marine habitats. In tropi-

cal seascapes, for example, mangroves, seagrasses and sandy

shorelines are typically under-represented in marine conserva-

tion networks (relative to coral reefs) (Mumby, 2006; Unsworth

& Cullen, 2010; Nagelkerken et al., 2015). This integrates well

with the gradual conceptual shift in perspective for marine con-

servation, from a historical focus on individual patches or habi-

tats (Boström et al., 2011) to the broader consideration of whole

ecosystems transferring concepts and techniques from terres-

trial landscape ecology.

A stronger focus on connectivity in conservation will likely

benefit more than just fish populations and the performance of

Table 1 Priority questions for research on connectivity and
conservation in marine ecosystems. Cited studies provide
examples of potential approaches for examining each priority
question.

Priority research questions

1. In situations where positive effects of connectivity on reserve

performance are evident, what is the shape of the ‘distance–decline’

response curve and are thresholds evident in the effect of

connectivity (e.g. Martin et al., 2015)?

2. What factors are most important in determining the scale of

connectivity effects on reserve performance (e.g. species biology,

seascape composition, habitat quality, fishing pressure) (e.g. Olds

et al., 2013)?

3. Does connectivity improve reserve performance in seascapes that

do not include coral reefs (e.g. estuaries, rocky reefs, sandy beaches,

seamounts) (e.g. Langlois et al., 2005)?

4. Does connectivity improve reserve performance for organisms

other than fishes (e.g. MacArthur et al., 2011)?

5. How widespread and prominent are connectivity effects on

ecological processes (e.g. herbivory, predation, recruitment) in

reserves (e.g. Valentine et al., 2008)?

6. Do the effects of connectivity on ecological functions improve the

resistance of protected ecosystems to disturbance, or influence their

recovery (e.g. Olds et al., 2012)?

7. To what extent do the characteristics of seascapes at reserve

boundaries influence movement within reserves and spillover from

reserves (e.g. Pittman et al., 2014)?

A. D. Olds et al.
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marine reserves. It may, for example, also enhance the joint

capacity of adjacent habitats, such as reefs, mangroves and

seagrasses, to buffer seawater pH (e.g. Unsworth et al., 2012),

cope with sea-level rise (Saunders et al., 2014), mitigate physical

disturbance (e.g. Mumby & Hastings, 2008) and promote eco-

logical resilience across seascapes (e.g. Olds et al., 2012). At a

broader scale, conserving connectivity will also enable organ-

isms to access refugia from perturbations operating at local to

regional scales (e.g. mining; Schlacher et al., 2014) to global

phenomena (e.g. rising temperatures; Magris et al., 2014). Con-

nectivity may also increase the value of ecosystem services pro-

vided by seascapes. For example, the value of a coral reef that is

well connected to mangroves may be very different from that of

a reef which is isolated from complementary resources (Hyndes

et al., 2014).

FUTURE DIRECTIONS

To date, all studies that have examined whether connectivity

benefits conservation have been conducted in reef seascapes

(eight on coral reefs; two on rocky reefs) (Appendix S2). It

remains to be seen whether similar effects can also be demon-

strated in a wider range of seascapes (e.g. coastal wetlands, soft

sediments) and at the terrestrial–marine interface (i.e. beaches

and estuaries) (e.g. Langlois et al., 2005) (priority question 3,

Table 1). Research has also largely focused on fishes and should

now be expanded to evaluate the conservation benefits of con-

nectivity for other organisms, such as crustaceans (e.g.

MacArthur et al., 2011) (priority question 4, Table 1).

Of the studies reviewed here, few had attempted to address

questions about possible joint functional effects of seascape con-

nectivity and marine reserves on ecological processes (e.g.

herbivory, predation, recruitment). Consequently, we do not

know whether effects of connectivity on ecological functions are

common in reserve networks (e.g. Valentine et al., 2008) (prior-

ity question 5, Table 1). This is a promising avenue for future

research because the influence of connectivity on ecological

processes provides the basis for conservation to influence eco-

system resistance and recovery (e.g. Olds et al., 2012) (priority

question 6, Table 1).

Studying the effect of seascape connectivity on animal move-

ment will shed light on the mechanisms that underpin such

spatial ecological relationships, and is key to appreciating how

seascape conservation influences dispersal (e.g. Harrison et al.,

2012). At present, little is known about how the characteristics of

seascapes at reserve boundaries (i.e. whether habitat is continu-

ous or patchy) influence movement and dispersal from reserves

(Freeman et al., 2009; Pillans et al., 2014; Pittman et al., 2014).

Spillover, which is a fisheries objective for many reserves

(Halpern et al., 2009), will likely be enhanced where habitat is

continuous at reserve boundaries, but this will also work against

the accumulation of fish biomass in reserves, which is a key

conservation objective (Babcock et al., 2012; Edgar et al., 2014).

Studies are needed to measure how the characteristics of sea-

scapes at reserve boundaries influence the frequency and mag-

nitude of spillover from reserves (e.g. Freeman et al., 2009;

Pittman et al., 2014) (priority question 7, Table 1). This will

enhance our understanding of the capacity of reserves to achieve

a common fisheries objective and thereby improve planning

decisions about optimizing reserve design and placement. Given

that reserves affect the behaviour and movement of exploited

species (Halpern et al., 2009; Babcock et al., 2010), it will be

important to examine whether effects of seascape connectivity

on movement, dispersal and habitat use differ between seascapes

within reserves, those that span reserve boundaries or areas that

are open to fishing.

CONCLUSIONS

We find that the disciplines of landscape ecology and conserva-

tion biology lack close integration in the ocean, resulting in few

studies that explicitly test for the effects of seascape connectivity

on marine reserve performance. By contrast, landscape ecology

has proven instrumental in terrestrial conservation (Rudnick

et al., 2012; Kool et al., 2013), and we contend that it will

offer similar benefits in the sea. Despite connectivity being

increasingly viewed as important in marine conservation, this

has generally not translated into quantitative objectives for con-

servation planning (Magris et al., 2014). While this review

focused on the implications of seascape connectivity for marine

conservation, our findings may have broader implications for

spatial conservation planning and ecosystem-based manage-

ment because connectivity is rarely evaluated when assessing the

effectiveness of management initiatives in either aquatic or ter-

restrial ecosystems. To better integrate connectivity into conser-

vation we must focus research on identifying the mechanisms

that underpin connectivity and the functions it delivers for eco-

systems. Progress in spatial conservation planning will then be

made by linking empirical studies of this nature with theoretical

advances in our understanding of connectivity and the scale

over which it impacts conservation outcomes.
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