Comparison of Storm Intensity and Timing on Modeled Risks from Runoff Contaminants in Two U.S. Regions

Erica Boyce
Thomas Siewicki
NOAA National Ocean Service
Center for Coastal Environmental Health and Biomolecular Research

Sheltering Communities from Coastal Storms
Coastal Storms Program – Ecological Assessment Components

- **Risk Assessment**
 - Land uses
 - Toxicology
 - Database
 - http://www.chbr.noaa.gov/easi

- **Modeling**
 - Transport and fate
 - Representative watershed

- **Toxicology**
 - Indigenous species
 - To fill information voids
Pilot Areas

Source: www.sjrwmd.org

Coastal Storms Initiative
Transport and Fate Modeling

- **Three Contaminants chosen by a preliminary risk assessment**
 - Florida – Atrazine, Fipronil, and Imidacloprid
 - PNW – Carbaryl, Diquat Dibromide, Fluoranthene

- **PRZM-3 (Pesticide Root Zone Model)**
 - Groundwater Hydrology and Chemical Transport
 - Effects of Rain, Application, Transpiration, etc.

- **EXAMS-II (Exposure Analysis Modeling System)**
 - Surface Water Effects of Sorption, Biodegradation, Photolysis, etc.
 - Uses Output of PRZM
 - Predicted Concentrations Compared to Aquatic Animal and Human Health Levels of Concern.
PRZM Methods

- Published chemical parameters
- Local meteorological data
 - 2-Yr, 25-Yr and 100-Yr storms
 - Rainfall on the 1st of the month
- Contaminants applied at maximum allowed rate
- Pesticides applied 1, 6 or 16 days before storms
EXAMS Methods

- Used PRZM loadings and other inputs
- Published chemical parameters
- Local meteorological data
Florida PRZM Methods

- Lake Bethel, Florida environment
 - Estuarine headwaters are most susceptible
 - Typical of Southeastern US changing adjacent land uses

- Pesticides applied at maximum allowed rate
 - Atrazine 142 times Fipronil
 - Atrazine 4 times Imidacloprid
 - Imidacloprid 32 times Fipronil
Runoff of Atrazine

- Highest concentration of the 3 pesticides
- Storms:
 - 100-Yr > 25-Yr > 2-Yr
- Application:
 - 1-D > 6-D > 16-D
Runoff of Fipronil

- Lowest concentration of the 3 pesticides
- Storms:
 - 100-Yr > 25-Yr > 2-Yr
- Application:
 - 16-D > 6-D > 1-D

Fipronil Concentrations in Runoff (kg/ha/d)

Coastal Storms Initiative
Runoff of Imidacloprid

Imidacloprid Concentrations in Runoff (kg/ha/d)

- **Storms:**
 100-Yr > 25-Yr > 2-Yr

- **Application:**
 16-D > 6-D > 1-D
• Odd numbers are littoral
• Even numbers are benthic
• 1 and 2 are closest to shoreline
• 3 and 4 are next
• 5 and 6 are main lake body
Dissolved Chemical Concentrations in Littoral Compartment Nearest Shore

- **Storms:**
 - 100-Yr > 25-Yr > 2-Yr

- **Compartments:**
 - 1 >> 3 > 5

- **Pesticides (concentration not toxicity):**
 - Atrazine > Imidacloprid > Fipronil

- **Application Date:**
 - Atrazine: 1 > 6 > 16
 - Fipronil and Imidacloprid: 16 > 6 > 1

- Note different Scales
Florida Modeling Results

Atrazine

- **Max runoff and erosion**
 - application one day before the rain

- **Peak short term runoff**
 - 13 ug/l
 - approximate chromic toxicity threshold for a copepod
 - near acute toxicity threshold for algae
 - lower than acute toxicity levels for most crustaceans and finfish (Bejarno and Chandler, 2003; Bringman and Kehn, 1976)

- **Storage within core depth**
 - higher than fipronil and imidaclorprid

- **Risk**
 - relatively short lived
 - poses lower risk if storms occur a few weeks after application
Florida Modeling Results

Fipronil

- **Maximum runoff and erosion**
 - application 16 days before rain

- **Peak short term runoff**
 - 5.7×10^{-3} ug/l
 - 50 times lower than the acute toxicity threshold for grass shrimp (Key et al, 2003)

- **Risk**
 - highly toxic
 - little chance that levels toxic to important prey would be reached even after a heavy rainfall

Coastal Storms Initiative
Florida Modeling Results
Imidacloprid

- **Maximum runoff and erosion**
 - application 16 days before the rain

- **Peak short term runoff**
 - 0.63 ug/l

- **Risk**
 - levels suggest little risk
 - has the highest leaching rate
 - the only one to leach below the core depth
 - potential threat to deeper aquifers transport through groundwater.

Coastal Storms Initiative

http://iml.jou.ufl.edu/projects/Spring04/Paquet/aquifer.html
Florida Modeling Results

Overall

- Each pesticide was storm and application date dependant
- Fipronil
 - Highest toxicity
 - Poses the least risk due to low transport over and through shallow soils
- Atrazine
 - Lowest toxicity
 - Highest threat due to high mobility and high application levels
- In combination
 - All three pesticides can occur in the modeled conditions
 - Key et al. (2006) identified the magnification coefficient of 1.21 to grass shrimp when atrazine, fipronil, and imidacloprid were present together

Coastal Storms Initiative
Johnson Creek Headwaters – Multnomah and Clackamas Counties, Oregon

Coastal Storms Initiative
Johnson Creek PRZM Methods

- Johnson Creek headwaters environment
 - Urbanized freshwater stream, spawning salmon habitat
 - Typical of Northwestern US adjacent land uses
- Segmented the watershed according to predominant land use
 - Agricultural
 - Urban
 - Forested
Johnson Creek PRZM Methods

- Carbaryl and Diquat Dibromide were applied at maximum allowed rate
- Pesticides applied 1, 6 or 16 days before storms
- Fluoranthene not included in PRZM model runs
Runoff of Carbaryl

- **Highest concentration of the 2 pesticides**
- **Storms:**

 100-Yr > 25-Yr > 2-Yr

- **Application:**

 1-D > 6-D > 16-D

- **Landuse:**

 Ag > Urban > Forested

Coastal Storms Initiative
Runoff of Diquat Dibromide

- Lowest concentration of the 2 pesticides
- Storms:
 - 100-Yr > 25-Yr > 2-Yr
- Application:
 - 16-D > 6-D > 1-D
- Landuse:
 - Urban > Ag > Forested

Coastal Storms Initiative
EXAMS Methods

- Used PRZM loadings and other inputs
- Fluoranthene loading was estimated from reported roadway runoff concentrations (Hewitt and Rashed, 1992) – entered the modeled system on days of rain
- Published chemical parameters
- Local meteorological data

http://web.pdx.edu/

Coastal Storms Initiative
• Odd numbers are littoral
• Even numbers are benthic
• 1 and 2 are in the agricultural segment
• 3 and 4 are in the urban segment
• 5 and 6 are in the forested segment
Dissolved Chemical Concentrations in Littoral Compartments

- **Storms**: 100-Yr > 25-Yr > 2-Yr
- **Watersheds**:
 - Carbaryl highest in Forested Segment
 - Diquat highest in Agricultural Segment
 - Fluoranthene highest in Forested Segment
- **Pesticides (concentration not toxicity)**:
 - Carbaryl > Fluoranthene > Diquat Dibromide
- **Application Date**:
 - Carbaryl: 1 > 6 > 16
 - Diquat Dibromide: 16 > 6 > 1

- Note different Scales
Johnson Creek Modeling Results
Carbaryl

- **Maximum runoff and erosion**
 - application one or six days before the rain

- **Peak short term runoff**
 - 413 µg/l
 - two orders of magnitude higher than acute toxicity for daphnia
 - near salmonid toxic thresholds
 - exceeds acute toxicity to several crustacean (Verschueren, 1996; Macek and McAllister, 1970; Buchanan et al., 1969; Sanders and Cope, 1966)

- **Risk**
 - high storage
 - short lived

http://www.4j.lane.edu/partners/eweb/ve/salmon/salmon.jpeg
Johnson Creek Modeling Results
Diquat Dibromide

• Maximum runoff and erosion
 ◦ application 16 days before the rain

• Peak short term runoff
 ◦ 5.6×10^{-2} ug/l
 ◦ five orders of magnitude less than acute toxicity for rainbow trout and the chinook salmon (Pimentel, 1971; Bond et al., 1960)

• Risk
 ◦ very toxic
 ◦ little chance that toxic levels will occur after heavy rainfall

http://techalive.mtu.edu/meec/module07/exotics_2.htm
Johnson Creek Modeling Results
Fluoranthene

- **Peak short term runoff**
 - 2.0 ug/l
 - approximate acute toxicity thresholds for mysid shrimp and sea urchins (Montizaan, 1989; USEPA, 1991)
 - similar to salmonid acute toxicity levels when UV activated but much lower without UV activation (USEPA, 1991, 1991; Home and Oblad, 1983)

- **Risk**
 - Toxicity from roadway runoff possible under isolated conditions of intense runoff and little mixing
Johnson Creek Modeling Results
Overall

- Both pesticides were storm and application date dependant
- The PAH, fluoranthene, was storm dependant
- Carbaryl
 - 5x more toxic than diquat dibromide to important salmonid species and transported at concentrations 7000 times higher
 - carbaryl poses greater risk to crustaceans followed by fluoranthene
- Fluoranthene
 - poses the greatest risk to spawning salmonids followed by carbaryl

Coastal Storms Initiative
http://www.oregonzoo.org
Overall Summary

- **PRZM Model**
 - Estimates shallow groundwater and runoff contamination
 - Identifies effects on runoff
 - Provides NPS inputs to exposure model

- **EXAMS Model**
 - Estimates surface water and sediment concentrations
 - Used to identify sensitive areas/habitats
 - Effects of storms types, application date
 - Compares pesticides, other contaminants
Acknowledgements

The authors wish to thank the following for their invaluable contributions to this research:

Florida DEP
Dr. Ashok Shahane (FDACS)

SJRWMD
Karl Lee (USGS, Portland Oregon)

Johnson Creek Inter-Jurisdictional Committee

