

Studies Of Soft-Bottom Benthic Assemblages And Levels Of Contaminants In Sediments And Biota At Gray's Reef National Marine Sanctuary And Nearby Shelf Waters Off The Coast Of Georgia, 2000 And 2001.

Cynthia Cooksey, Jeffrey Hyland, W. Leonard Balthis, Michael Fulton, and Daniel Bearden

NOAA, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Environmental Health and Biomolecular Research

Contact Information: E-Mail: Cynthia.Cooksey@noaa.gov Telephone: 843-762-8653

ABSTRACT

As part of an ongoing ecological characterization of Gray's Reef National Marine Sanctuary (GRNMS) and nearby shelf waters, surveys of soft-bottom benthic stics, contaminant levels in sediments and biota, and other habitat conditions were conducted during spring 2000 and 2001. The first surve was conducted at 20 stations within the sanctuary to document baseline environmental conditions. The scond survey was conducted at 20 stations, including a subset of Year-1 stations within the sanctuary and a new series of inner-shell stations positioned along three cross-shell framects of the stations each. These standards provide a means to examine spatial patterns in the measured environmental variables in reation to both natural factors (e.g. dept) and polehida definitions and the sanctuary of the measured environmental variables in reation to both natural factors (e.g. dept) and polehida definitions are not account of the statement of the measured environmental variables in reation to both natural factors (e.g. dept) and polehida definitions are not account of the statement of the sta anthropogenic factors (e.g., proximity to land-based sources of contaminants). An important goal of this work has been to determine the extent to which land-based sources of pollutants and other materials are transported through river systems to the offshore shelf environment, inclusive of GRNMS, and the potential effects that these materials may have on biological resources along the way. A significant finding from the first year of sampling was the presence of trace concentrations of pesticides and other man-made chemicals in both sediments and botta within GRNMS, which demonstrated that these materials are capable of making their way to the offshore sambary environment (albert alto woncentrations not likely of being associated with adverse bioeffects). Results of the spring 2001 survey reveal cross-shelf patterns in both benthic communities and trace concentrations of chemical contaminants in sediments

INTRODUCTION

A series of studies was initiated to assess the condition of benthic macroinfauna and chemical contaminant levels in sediments and biota of the Gray's Reef National Marine Sanctuary (GRNMS) and nearby shelf waters off the coast of Georgia. Benthic research in the sanctuary by previous

soft-bottom benthos is a key component of coastal ecosystems, playing vital roles in detrital decomposition, nutrient cycling, and energy flow to higher trophic levels. Moreover, because of their relatively stationary existence within the sediments, benthic infauna (Fig. 1) can serve as reliable

Key objectives of the research are: (1) to document existing environmental conditions within the

sanctuary in order to provide a quantitative benchmark for tracking any future changes due to either and sediment contaminant concentrations and to identify potential controlling factors associated with

the observed patterns; (3) to assess any between-year temporal variability in benthic fauna; and (4) to evaluate the importance of benthic fauna as prey for higher trophic levels. Such questions are being addressed to help fulfill long-term science and management goals of the GRNMS. However, it is

anticipated that the information will be of additional value in broadening our understanding of the

surrounding South Atlantic Bight (SAB) ecosystem and in bringing the knowledge to bear on related

indicators of potential environmental disturbances to the seafloor

Gravs Reef Nati

20 1000

source-management issues of the region

Figure 2. Sampling design. Station numbers are

wn for sites sampled in spring 2001. Station bers for sites sampled in spring 2000 are

ays Reef National Marine Sanctuary

1 8 ×

1. .

5 X 5

investigators has focused largely on live-bottom assemblages associated with rocky outcrops. In

contrast, there has been limited work on the ecology of unconsolidated sandy substrates, which characterize the majority of the seafloor within the sanctuary and surrounding continental shelf. The

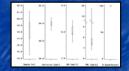


Figure 4. Key habitat characteristics at GRNMS in Apr (n = 20 sites). Boxes are interquartile ranges, ontal lines within boxes are medians and wiske ints are high/low extremes. Note in the last plo es of % sand-gravel fall within a very narrow ange of 99-100%

Contraction of the life, No. and the second second

Figure 5. Comparison of sediment contamination (% area) at GRNMS (

stuaries sampled during EMAP Inpublished data from J. Hyland, NOAA).

Figure 6. All measured analytes in tissue sample collected in April 2000 (10 black sea bass, 9 ark

shell composites; pictured above) were below human-health guideline values.

Mean No. Taxa Total No. Taxa

Station

rea) at GRNMS during the contamination (% area) at GRNMO during present study (April 2000) vs. southeastern

95 % (0+18)

CRIME April EMAP S.E. Enhanten: 1994 B

ples within each station are combined over all 3 replicates. A similarity level of 0.55 (dotted lin was used to define the two major site groups.

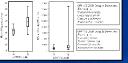
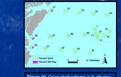
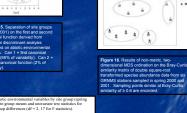
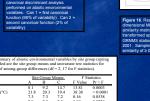



Figure 9. Comparison of benthic species richness (# species/grab), abundances (#/m2), and dominants at GRNMS 2000 site groups A vs. B. For the # species and abundances: xxes are interquartile ranges, horizontal lines within boxes are edians, and wisker endpoints are high/low extremes.





the three site groups (Spring 2001)

	Mediomastas spp. (P) Policieras esimias (P)							Taxa				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Palacieras eximites (P)				17192	41	3.28	149				
$ \begin{array}{c} \frac{1}{1000} \exp\left(\frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$												
$\frac{M_{2}M_{2}M_{2}M_{2}M_{2}M_{2}}{K_{2}M_{2}M_{2}M_{2}M_{2}M_{2}M_{2}} = \frac{1}{10} $	Thorys asstas (P)	56.50										
$\frac{1}{10000000000000000000000000000000000$	Streblospio benedică (P)	2933										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mediometras ambiaras (P)											
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	3prophanes hombys (P)											
$ \begin{array}{c} f_{abs}^{(1)}(m) = 0 \\ f_{abs}^{(1)}($	Tubificidae (O)		77									
$\frac{\operatorname{Kardens}}{\operatorname{Kardens}} (\begin{smallmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	Exception rational (P)											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Madianestas collication (P)	1017										
$ \begin{array}{c} \frac{1}{1000} \cos \left(\frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000000000000000000000000000000000$	servermenter colfornation (P)	res/	~									
$\frac{d_{M}(u_{M},w_{M},w_{M})}{d_{M}(u_{M},w_{M})} = \frac{d_{M}(u_{M},w_{M})}{d_{M}(u_{M},w_{M})} = \frac{d_{M}(u_{M},$	Mediomester spp. (P)				5860	31	2.75	143				
$\frac{ v_{max} _{max}}{ v_{max} _{max}} \left(\begin{array}{ccccc} v_{max} & v_{max} & v_{max} \\ v_{max} & v_{max} & v_{max} & v_{max} & v_{max} \\ v_{max} & v_{max} & v_{max} & v_{max} & v_{max} \\ v_{max} & v_{max} & v_{max} & v_{max} & v_{max} & v_{max} \\ v_{max} & v_{max$												
$\frac{1}{10000000000000000000000000000000000$	Overnia fasiformis (P)											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Oxyanostylis anithi (C)											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mediomostas ambiaras (P)											
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Tellina spp. (B)	500	62									
$\frac{h_{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_{2}h_{2$		450										
$\partial \left(\log n + \log n$	Phonocephandae (C)											
The constraints of the second	Protofanstovias sigleyi (C)									Table 5 Total day	store coafficie	
Characterization (1) (1) 1 k to 10 (10 k to 10) 10 10 (10 k to 10	RESIGNOCORIA	288	70	100								
Advancementary 110 12 12 12 12 12 12 12 12 12 12 12 12 12	Course (descent/G)	1735		100	7247	44	1.60	162				
Amatalam et de la constant de la con					1004							
Londaux and products 100 Hz 100 Hz 100 Hz Londaux and products 100 Hz 100 Hz Distribution Hz 100 Hz Di	Puntrelandian (P)									among site groups.	Coefficients	200
Analysis of the second	Tubificidae.(D)											
Andread and provide the second										imposalit il cici it	income and the	621
Consideration for the set of the set o												
And water and enderson (b) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cressinella dupliniana (B)	717	37	92						Mariaha		sc
Advance danse for the second s		587		92						v ar table	Casl	
A distance and a set of the set o	Sphaeroryllis pir@eropsis (P)	577		54								
Addate and yet of "Update" Addate and the other of parts and the other of parts and the other other of parts and the other oth	Erichthonias braniliensis (C)	525		62								
	I species combined, averaged over	all replicates a	and stations	within a s	ity encen							
	dculated using base 2 logarithms.									Salinity	-0.705	
The second secon												
ManifiXiQuete 033 0.43 Disacclass Sacc 4.75												
			100									
										Phi	0.426	
	and the second s									Distance from Shore	0.735	
	*	e			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.00						
	Figure 15	Geral Separat			oups	* C				(· · ·		
(spring 2001) on the first and second canonical function derived from canonical discriminant analysis performed on abiotic environmental	Figure 15 (spring 20) canonical performed	Separat 01) on the function of discrimination of on abioti	e first a derived ant ana ic envir	ind se from ilysis onme	oups	400				(* 4 (* 4 (* 4)		
canonical function derived from canonical discriminant analysis performed on abiotic environmental variables. Can 1 + first canonical	Figure 15 (spring 20) canonical performed variables.	Separat 01) on the function of discrimina on abioti Can 1 =	e first a derived ant ana ic envir first ca	ind se from ilysis onme nonici	oups cond ntal al					() () () () () () () () () () () () () (
canonical function derived from canonical discriminant analysis performed on abolic environmental variables. Can 1 = first canonical function (CBF) of underlability. Can P =	Figure 15 (spring 20) canonical performed variables.	Separat 01) on the function of discrimina on abioti Can 1 =	e first a derived ant ana ic envir first ca	ind se from ilysis onme nonici	oups cond ntal al	400						
canonical function derived from canonical discriminant analysis performed on abotic environmential variables. Can 1 = frist canonical function (85% of variability). Can 2 = Figure 18. Results of non-metric	Figure 15 (spring 20) canonical performed variables function (6	Separat 01) on the function of discrimin- on abioti Can 1 = 8% of va	e first a derived ant ana ic envir first ca riability	Ind se from alysis onme nonica). Ca	oups cond ntal al n 2 =							
canonical function derives from canonical discriminant analysis performed on abolic environmental variables. Can 1 + friet canonical function (85% of variability). Can 2 + second canonical function (2% of approximate JMIS particulation out	Figure 15 (spring 20) canonical performed variables. function (g second ca	Separat 01) on the function of discrimin- on abioti Can 1 = 8% of va nonical fu	e first a derived ant ana ic envir first ca riability	Ind se from alysis onme nonica). Ca	oups cond ntal al n 2 =	440						
canonical function derived from canonical discriminant analysis performed on abdice environmental variaties Can 1 = frait canonical function (BK) of variatal). Can 2 = second canonical function (2K of dimensional MDS ordination on the for- mensional MDS ordination on the for- dimensional MDS ordination on the for-	Figure 15 (spring 20) canonical performed variables. function (g second ca	Separat 01) on the function of discrimin- on abioti Can 1 = 8% of va nonical fu	e first a derived ant ana ic envir first ca riability	Ind se from alysis onme nonica). Ca	oups cond ntal al n 2 =	440			d	imensional MDS or	dination or	n të
canonial function derived from canonical duritoriment analysis performed on abolic enformment function (PK) of variability). Can 2 = second canonical function (PK) of variability).	Figure 15 (spring 20) canonical performed variables. function (g second ca	Separat 01) on the function of discrimin- on abioti Can 1 = 8% of va nonical fu	e first a derived ant ana ic envir first ca riability	Ind se from alysis onme nonica). Ca	oups cond ntal al n 2 =	440			d si	imensional MDS or milarity matrix of d	dination or ouble squa	n ti re
canonial function derived from canonical duritoriment analysis performed on abolic enformment function (PK) of variability). Can 2 = second canonical function (PK) of variability).	Figure 15 (spring 20) canonical performed variables. function (g second ca	Separat 01) on the function of discrimin- on abioti Can 1 = 8% of va nonical fu	e first a derived ant ana ic envir first ca riability	Ind se from alysis onme nonica). Ca	oups cond ntal al n 2 =	400			d si	imensional MDS or milarity matrix of d	dination or ouble squa	n ti re
canonical function derived from canonical discriminant analysis performed on abotic environmental function (eBS of variability). Can 2 * second canonical function (cPs of variability).	Figure 15 (spring 20) canonical performed variables. function (g second ca	Separat 01) on the function of discrimin- on abioti Can 1 = 8% of va nonical fu	e first a derived ant ana ic envir first ca riability	Ind se from alysis onme nonica). Ca	oups cond ntal al n 2 =	440			d si tr	imensional MDS or imilarity matrix of d ansformed species	dination or ouble squa abundanc	n ti ire e o
canonial function derived from canonial discriminant autypes performed on abole environmental suncessor (BK) variability). Soa 2 = second canonical function (2% of variability).	Figure 15 (spring 20) canonical performed variables. function (g second ca	Separat 01) on the function of discrimin- on abioti Can 1 = 8% of va nonical fu	e first a derived ant ana ic envir first ca riability	Ind se from alysis onme nonica). Ca	oups cond ntal al n 2 =	400			d si tr G	imensional MDS or inilarity matrix of d ansformed species RNMS stations sar	dination or ouble squa abundanc mpled in sp	n th ire e o prin
canonical function derived from canonical discriminant analysis performed on abotic environmental function (eBS of variability). Can 2 * second canonical function (cPs of variability).	Figure 15 (spring 20) canonical performed variables. function (g second ca	Separat 01) on the function of discrimin- on abioti Can 1 = 8% of va nonical fu	e first a derived ant ana ic envir first ca riability	Ind se from alysis onme nonica). Ca	oups cond ntal al n 2 =	410			d si tr G	imensional MDS or inilarity matrix of d ansformed species RNMS stations sar	dination or ouble squa abundanc mpled in sp	n th ire e o prin

tics). tatistics Pr > F 0.0003 < 0.00001 0.8538 0.0738 < 0.0001 0.0002 0.0020

	Table 4. Summary of abiotic environmental variables by site g 2001). Included are the site group means and univariate test sta significance of among-group differences (df = 2, 17 for F statist							
	Variable	Site	Group N	feans:	F St			
	variable	A	в	С	F Value			
- 2	Depth (m)	8.1	9.2	14.7	13.81			
· /	Temperature (°C)	21.8	20.3	19.4	38.38			
/	DO (mg/L)	7.3	7.3	7.2	0.16			
/	pH	7.9	7.9	7.9	3.05			
	% Silt-Clay	24.2	1.6	0.4	320.39			
No. Taxalpreb	Mean ERM Quotient	0.010	0.012	0.006	14.47			
1.60	phi (Median Particle Size)	1.95	2.08	1.03	9.20			
	TOC (mg/g)	4.6	3.7	2.3	8.52			
-	Salinity (%)	29.9	34.5	35.6	3.41			
38	Distance from Shore (km)	2	11	28	39.43			

Figure 13. Dendogram resulting from clustering of stations sampled in spring 2001, using group average sorting and Bray-Curtis similarity. Samples within each station are combined over

100

all 3 replicates. A similarity level of 0.35 (dotted ine) was used to define the major site groups

Figure 14. Comparison of sne

Figure 7. Comparison of benthic species richness, diversity and abundance at GRNMS sites sampled in April 2000 (n = 20) vs. estuar sites of similar salinity (> 30 ppt) in EMAP Carolinian Province (n = 38). Boxes are interquartile ranges, horizontal lines within boxes are medians and wisker endpoints are high/low extremes. Base 2 logarithms were used to

Figure 3. Station locations within GRNMS ons were randomly selected within each of the 20 cells (2.9 km² each). All stations were sampled in spring 2000 and ones with triangles were resampled in

ACKNOWLEDGEMENTS

This work was sponsored by the NOAA National Marine Sanctuaries (NMS) Program. Special recognition is extended to Reed Bohne and Greg McFall NOAA/GRNMS Office) and Jon Hare (NOANCISHING SUPPRIME) and Join Hate (NOANCCOS)CCEPHR) for program coordination, to Barry Vitor & Associates (Mobile, AL) for analysis of macriminania samples; to Peter Jenkins, Asron Dias, Eric Strozier, Scott Sivertsen, and Brian Shaddrix (NOANNCCOS)CCEHRB) for analysis of themical contaminants; and to Cathy Sakas and Greg McFail MCOA INCENTE Orders and the atmost Greg McFail NOAA/GRNMS Office) as well as the crew of the NOAA

During both years, samples were collected at each station for characterization of general habitat conditions (depth, temperature, salinity, pH, dissolved oxygen, total organic carbon, grain size), concentrations of sediment contaminants (metals, pesticides, PCBs, PAHs), diversity and abundance of macroinfauna (> 0.5 mm), and aesthetic quality (presence of anthropogenic debris, visible oil, noxious sediment odor, and water clarity based on secchi depths). During the first year, samples of benthic and demersal fauna (the turkey wing arc shell Arca zebra and black sea bass Centropristis

METHODS

The study was designed around a two-year field effort with one sampling event in each year. The first

To address Year-1 objectives, 20 stations were established all within the sanctuary boundaries (Fig. 2 To adures their 1 objectmes, 20 saturits were established an within the sence any operative (r)2, and 3). A random sampling design was applied to support probability-based estimates of the percentage of area with degraded versus non-degraded condition relative to various measured environmental indicators. The resulting sampling framework is a 58-with "girl of 20 individual cells, each of which is 2.9 km², and which together are representative of the total area of the sanctuary (Fig.

conducted April 29-May 5, 2001 (NOAA Ship FERREL Cruise FE-01-08-MA: Leg 1).

cruise was conducted April 3-7, 2000 (NOAA Ship FERREL Cruise FE-00-06-GR) and the second was

Figure 1. Examples of dominant macroinfaunal species

striata) also were collected in selected areas (by divers for the molluscs and by fish traps for the bass) and analyzed for concentrations of chemical contaminants in tissues. Sediment samples for macroinfaunal analysis were collected at each station in triplicate using a 0.04 m² Young grab sampler Each replicate was sieved in the field through a 0.5-mm mesh screen and preserved in 10% buffered ormalin with rose bengal. All infaunal samples were transferred to 70% ethanol once in the laboratory

Animals were sorted from sample debris under a dissecting microscope and identified to the lowest practical taxon (usually to species). The upper 2 - 3 centimeters of sediment from additional multiple grabs were taken at each station, combined into a single station composite, and then subsampled for analysis of metals, organic contaminants (PCBs, pesticides, PAHs), total organic carbon (TOC), and grain size, duplicates were run at ~10% of the stations for guality control purposes. A total of 12 norganic metals, 25 polynuclear aromatic hydrocarbons (PAHs), 26 polychlorinated biphenyls (PCBs) and 21 pesticides were measured at each station.

Sediment quality guidelines (SQG) for each corresponding chemical were used (where available) to help in interpreting the biological significance of the observed contaminant levels. Two types of SQGs Were used. (1) Effects Range-Low (ERL) and Effects Range-Median (ERM) values: and (2) Threshold Effects Level (TEL) and Probable Effects Level (PEL) values. ERL and TEL values are both lowerthreshold bioeffect limits, below which adverse effects of the contaminants on sediment-dwelling organisms are not expected to occur. In contrast, ERM and PEL values both represent mid-range entrations of chemicals above which adverse effects are more likely to occur. Concentration SQG comparisons were based on the lower ERL and upper ERM values for most chemicals: in some cases, however (e.g., where updated ERL and ERM values were not available), the alternative TEL and PEL values were used.

50259 4300 1642 3608 5900 1858 0.71

In general, chemical contaminants in sediments throughout the sanctuary are at background levels, below probable bioeffect guidelines. Trace concentrations of man-made pesticides (DDT, chlorpyrifos) and other chemical substances from human sources (PCBs, PAHs) were detected in hese sediments, though not at concentrations likely to cause significant bioeffects. © Contaminants in bisues of target benthic species are below human-health guidelines (where available) based on a limited sample population (10 filets of black sea bass and 9 arc-shell composites). Smillar to results for sediments,

10 u 17

Figure 11, Summary of chemical

alines (SOC)

spring 2001

relative to sediment quality

1.2 ...

Figure 12. Cross-shelf patterns in chemical contaminan levels expressed as mean ERM quotients. Data are fro

tissues of both species contained trace concentrations of additional chemical contaminants associated with human sources (pesticides, PCBs, PAHs). The vast stretches of sands throughout the sanctuary support a highly diverse and abundant infaunal community. Measures of diversity (number of species and H'), for example, are about twice as high as those observed for the

CONCLUSIONS

enthos in neighboring estuaries of comparable high salinity. > At present, zero % of the sanctuary area shows any significant evidence of impaired benthic condition coupled to adverse levels of chemical contaminants in sediments. However, the presence of trace concentrations of pesticides,

PCBs, and PAHs in both sediments and biota demonstrate that chemical substances originating from human activities are capable of reaching the offshore sanctuary environment and thus should be monitored to ensure that future problems do not develop. 2001

In general, chemical contaminants in sediments of the surrounding inner-shelf sampling area appeared to be at low background levels, similar to conditions observed within the sanctuary during the previous year. Importantly, there was a general pattern of decreasing concentrations with increasing distance from shore. Thus suggesting possible colverling of hese materials from inland sources through the coastal sounds. There were distance cross-shell gatterns in the structure and composition of berthic source), variations in the distance and any source down the second with the second with the second sources and materials from the structure of the second source and the second source and

visited to detained to shore (e.g., depth). Additional unmeasured controlling factors also reliabed to distance from shore may be contribuing to these patters. There also were notable cores-shelf differences in special diversity of the second shore in the special number of species. This result supports the year that the sanchary, and probably much of the offshore

South Atlantic Bight region, is an important reservoir of marine biodiversity. Additional finer-scale spatial variations in benthic fauna were detected among stations within the sanctuary boundaries and may be related to differences in the proximity to live-bottom habitat. However, any such spatial variability in

benthic fauna within the sanctuary is less pronounced than the broader spatial patterns observed across the shelf.

Minor differences in benthic community structure were detected between sampling periods (spring 2000 vs. spring 2001) at sites within GRNMS. As for the interpretation of small-scale spatial variability, it is important to recognize that such variability is much less pronounced than the broader spatial patterns observed across the shelf. Albeit small, such temporal variability will need to be taken into account in any future efforts to monitor potential long-t environmental changes due to human or natural disturbances.